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Resumé

The Cramér-Rao Lower Bound (CRLB) is a lower bound on the covariance matrix of the
error of unbiased vector parameter estimators. It represents a bound on an information
content of data about an unknown parameter in a statistical model of the given data. CRLB
is a classical tool stemming from the works of Cramér, Rao [8], [9], and other researchers
in 1950’s. CRLB has many extensions and modifications: a Bayesian CRLB for random
parameters [10], [11], a hybrid CRLB for a mixture of random and deterministic parameters
[12], a CRLB for biased estimates [13].

Several other more accurate lower bounds were derived, e.g. Barankin bound [14], Bhat-
tacharyya bound [15], and (in the Bayesian context) a Ziv-Zakai bound [16], to name a few.
However, CRLB remains the most frequently used lower bound in a very wide variety of
signal processing problems thanks to its mathematical tractability. The bound is used as a
performance gauge for all existing parameter estimators, indicating whether the estimators
utilize the available information about the estimated parameter efficiently or not, and in
what extent. The CRLB itself is subject of a theoretical research up to now, see, e.g., [13].

The dissertation consists of seven scientific articles on computing different variants of the
CRLB in different applications:

[1] P. Tichavsky, “Posterior Cramer-Rao bounds for adaptive harmonic retrieval”, IFEE
Trans. on Signal Processing vol. 43, no.5, pp. 1299-1302, May 1995.

[2] P. Tichavsky, C. Muravchik and A. Nehorai, “Posterior Cramér—Rao bounds for discrete—
time nonlinear filtering”, IEEE Tr. on Signal Processing, vol. 46, no. 5, pp. 1386-1396,
May 1998.

[3] M. Simandl, J. Krélovec and P. Tichavsky, “Filtering, predictive, and smoothing Cramér-
Rao bounds for discrete-time nonlinear dynamic systems”, Automatica, vol. 37, no.
11, pp. 1703-1716, November 2001.

[4] P. Tichavsky, K.T. Wong and M.D. Zoltowski, “Near-Field/Far-Field Azimuth & El-
evation Angle Estimation Using a Single Vector-Hydrophone”, IEEE Tr. on Signal
Processing, vol. 49, no. 11, pp. 2498-2510, November 2001.

[5] P. Tichavsky and K.T. Wong, “Quasi-fluid-mechanics-based quasi-Bayesian Cramer- Rao
bounds for deformed towed-array direction finding”, IEEE Tr. on Signal Processing,
vol. 52, no.1, pp. 36-47, January 2004.

[6] P. Tichavsky, Z. Koldovsky, and E. Oja, “Performance Analysis of the FastICA Algo-
rithm and Cramér-Rao Bounds for Linear Independent Component Analysis”, IEEE

Tr. on Signal Processing, vol. 54, no. 4, pp.1189-1203, April 2006. Corrections: vol.
56, no. 4, pp. 1715-1716, April 2008.

[7] P. Tichavsky, A.H. Phan, Z. Koldovsky, “Cramér-Rao-Induced Bounds for CANDE-
COMP/PARAFAC tensor decomposition”, IEEE Trans. Signal Processing, vol. 61,
no. 8, pp. 1986-1997, April 2013.

These papers include the Bayesian CRLB derived for the recursive system identification,
and the deterministic and the hybrid CRLB for the recursive sinusoidal frequency estimation,
for nonlinear filtering, for the direction-of-arrival estimation, for the independent component
analysis, and for the canonical polyadic tensor decomposition, respectively. Although the
concept of the theory of the CRLB is well known, in practical applications its computation
might be quite complicated, and the computation of this bound in particular applications



is novel and important contribution to understanding the relation between the data and
the estimated parameter. Sometimes, analysis of the CRLB leads to a derivation of new
estimators. For example, the performance analysis of the algorithm FastICA for the inde-
pendent component analysis and the computation of the corresponding CRLB [6] has led to
a derivation of the algorithm EFICA [18] .

1 Introduction

Classical Cramér-Rao lower bound is a bound on covariance matrix of error of unbiased
estimates of an unknown deterministic parameter.

Assume we are given a family of distribution functions of the N—dimensional vector X,
indexed by a vector of parameters 6. X represents the random data and 6 is the unknown
deterministic parameter. The range © of # is assumed to be a subset of R, so 6§ is a
real-valued vector of dimension M. Let fy(X) be the probability density of X given 6 € ©.
Assume that such probability density exists and is twice differentiable with respect to 6.
The Fisher information, if exists, is defined as

F(0) = ~E Plg_fm]

0000T (1)

where Ey is the expectation operator with respect to the density fy(X). Let é(X ) be an
unbiased estimate of 0, and assume that

1. support of the density fy(X), i.e. the set of X € RY, where f5(X) > 0, is independent

of 6
2. V0 eO:Vm=1,...,M; Ozéifﬁﬁ’ = [ LX)y
B.V0eOVm=1,.... M; 32 [0(Y)fo(Y)dY = [0(Y)2eDqy
4. F(0) in (1) exists and is invertible .
Then, the celebrated Cramér-Rao inequality holds,
By |[(0(X) = 0)(0(X) = 0) | = [F@O)] . @)

The matrix inequality in (2) means that the difference between the left-hand side and right-
hand side of (2) is a positive semi-definite matrix.

The classical CRB is very well known. For example, it is known that equality in the
CRB inequality can be achieved if and only if the probability distribution fy(X) belongs to
the family of exponential distributions. If a maximum likelihood estimator of parameter
exists, its variance attains the CRLB asymptotically.

In comparison to the classical CRLB, the Bayesian CRLB is much less frequently studied.
The set-up is different. It is assumed that the parameter 6 is random, and a joint probability
density fp x of the pair (0, X) exists. The Cramer-Rao inequality reads

E[(0(X) - 0)(0(X) - 0)"| = F~" (3)

where the expectation is taken with respect to the pair (6, X), and F' is the information

matrix defined as
0? log fG,X(ev X)
00007

F:_E[ (4)



Indeed, in the case of random parameter 0, the optimum estimator 6(X) that minimizes the
left-hand side of (2) exists: it is the conditional mean of # given the data X. Covariance
matrix of this conditional mean is, in general, a tighter bound on covariance of all other
estimators than the inverse of the Fisher information matrix in (4). A disadvantage of the
exact (tight) bound is that is may not be mathematically tractable, unlike the CRLB.

The technical assumptions of the CRLB in (3) to be valid are different than the assump-
tions of the classical CR inequality. First of all, the estimators é(X ) need not be unbiased,
their bias can be nonzero, and the bias conditioned by given 6,

B(6) = [ (6(X) - 0)fuo(al6)iX (5)
obeys the condition
Jim B(0)fy(6) = , lm_ B(6)fs(6) = 0 )

form=1,..., M.

The model of the parameter # can also be hybrid: a part of # can be deterministic and
another part random [12]. A typical example is a direction-of-arrival (DOA) estimation using
the sensor array. In this application it is assumed that there is a number of plane acoustic or
electromagnetic waves impinging on an array of sensors. The main task is the estimation of
directions of arrival of the plane waves, which are the main deterministic parameters of the
model. Usually, there are some other deterministic nuisance parameters as well, e.g. signal
amplitudes, phases, etc. On top of it, there might be random parameters that describe
random fluctuations of the sensor position and the orientation from their nominal position,
random fluctuations of the sensor gains, and others. Although the nuisance parameters need
not be estimated, absence of their knowledge and the presence of the random parameters
influence the estimation of the parameters of the interest and its accuracy. An example of
the analysis of the model uncertainty can be found in the papers [4] and [5].

2 Research Articles in the Dissertation

2.1 CRLB for the Adaptive Harmonic Retrieval [1]

The first paper [1] deals with the computation of CRLB for the adaptive harmonic retrieval.
Here, received data is modeled as a cisoid (complex-valued sinusoid) which has a frequency
that randomly drifts in the interval (0, 27). Frequency increments are modeled as indepen-
dent Gaussian random variables with the zero mean and a small variance. In addition, the
data contain a complex-Gaussian random noise. The goal is, given variance of the frequency
increments and variance of the additive noise, to estimate the lowest possible mean square
error of a tracking algorithm estimating the instantaneous frequency. Here, “tracking” means
a recursive estimation of the instantaneous frequency at time ¢ given the history of the signal
up to time t. The estimated parameter (the instantaneous frequency) is random, therefore
a Bayesian CRLB is derived. We computed the bound in a closed form and showed that
the bound is attained by certain frequency tracking algorithms [17]. These algorithms were
proved to be statistically efficient in this way.

2.2 CRLB for Nonlinear Filtering [2], [3]

The second paper [2] (from 1998) is a generalization of the former one to a very general
scenario of nonlinear filtering. This paper became very popular in the system identification
community and received hundreds of citations in SCI. Assume that we are given a nonlinear



system represented by a state vector x,, which evolves in time through a possibly nonlinear
function f,, as z,41 = fu(zn,w,), where w, is a random Gaussian noise that enters in
the state evolution equation. The function can be, for example, linear or simply additive,
Tpi1 = Tn + w,. The challenge is that we cannot observe the state x, directly but only
through a nonlinear observation, as y, = gn(zn,v,), where g, is nonlinear function and v,
is another random noise that enters in the system. In the special case, the latter noise can
be additive, y, = gn(x,) + v,. The goal is to derive a CRLB on covariance matrix of errors
I, — x, where Z, is a function of the observations up to time n, i.e. ...y, 2, Yn_1,Yn. In
this paper, the bound is derived in a recursive form. It has been found useful in many
applications. The nonlinear filtering algorithms are often realized through particle filters.
As the computational power of modern computers grows, the particle filters become more
popular. It is, however, not known a priori, how many particles have to be used to get close
to the best possible performance. The CRLB helps to answer this question.

The following paper [3] by Krélovec, Simandl and Tichavsky derives a similar CRLB for
nonlinear prediction and smoothing. Given the measurements ...y, 2, Y,_1,Yn, the goal is
to estimate ., with m > 1 (prediction) or z,,_,, (smoothing).

2.3 CRLB for DOA Estimation Using a Single Hydrophone [4]

An application of CRLB in underwater statistics is studied in [4]. In particular, an accuracy
of Direction-of-Arrival (DOA) estimation using a single vector hydrophone is analyzed. A
vector hydrophone is composed of two or three spatially co-located but orthogonally oriented
velocity hydrophones plus another optional co-located pressure hydrophone. It is no longer a
tracking scenario, but a stationary scenario with an unknown deterministic parameter. The
CR bound is used to compare performance of complete and incomplete vector hydrophones.
In the latter case, one or more velocity hydrophones are absent. The analysis helps to
quantify the tradeoff between the estimation accuracy and complexity (cost) of the hardware.

2.4 CRLB for DOA Estimation Using a Towed Array [5]

The fifth paper [5] studies the accuracy of the DOA estimation using an array of classical
hydrophones that are placed on a cable towed by a vessel. The shape of the array is subject to
random deformations due to the towing vessel’s varying speed and transverse motion, by the
array’s non-neutral buoyance and nonuniform density changes, and by hydrodynamic effects
plus oceanic swells and currents. The inaccuracy of the array geometry is modeled using
physical considerations. In particular, transverse deformation/vibration of a thin flexible
cylinder, towed by a vessel, is known to obey a fourth-order partial differential equation
known as the Paidoussis equation. This equation describes the mechanical propagation of the
array-deformation down the array’s length. The equation was used to derive the covariance
matrix of random deviations of the array from its nominal position, which is further used in
expressions for CRLB for the DOA estimation using a randomly curved array.

2.5 CRLB for Independent Component Analysis [6]

The sixth paper [6] is related to the independent component analysis (ICA) and the blind
source separation. In the paper we study the task of analysis of an N x /N linear mixture of N
independent non-stationary signals. Each of the signals is modeled as a series of independent
realizations of a random variable having a non-Gaussian distribution !. The task is to find

ITo be accurate, at most one signal in the mixture is allowed to have Gaussian distribution, the other
signals must be non-Gaussian.



a mixing matrix of the size N x N that represents the mixture without any other prior
information about the separated signals. In the literature several popular algorithms to solve
the ICA problem were proposed. In the paper, one of the most successful ones (FastICA) is
studied and its performance is analyzed in terms of the Interference-to-Signal Ratio (ISR)
of the separated signals. In the same paper, the theoretical CRLB-based bound on accuracy
of the separation is derived and compared to performance of FastICA. The performance and
the CRLB depend namely on the probability distributions of the separated signals and their
length. The analysis was used to propose a novel variant of FastICA, called EFICA [18].

2.6 CRLB for Canonical Polyadic Tensor Decomposition [7]

The seventh paper [7] is related to a different area (tensor decompositions), but can be related
to the ICA model in a sense. The statistical estimation problem is related to stability of
canonical-polyadic (CP) tensor decomposition. The word “tensor” here means a rectangular
array of real or complex numbers. In general it can have a size d; X dy X ... X dy, where N
is called the tensor order. Each element of the tensor has IV indices, say ¢;, ;. The goal of
the CP decomposition is to find the smallest possible integer R (called rank of the tensor)
and N matrices (called factor matrices) Aj, j = 1,..., N of the size d; x R with elements
@jir,t=1,...,d;, 7 =1,... R, and R scalars Ai,..., Ag such that

R
tiy, iy = E M@y r oo ONinr
r=1

foralli; =1,...,d;, j =1,... N. Without any loss in generality it can be assumed that all
columns of all factor matrices have the unit Euclidean norm.

The CP decomposition, also known under the acronyms PARAFAC of CANDECOMP,
was found useful namely in several applications as chemometrics, biomedical signal process-
ing, and others.

The CRLB derived in the paper helps to study the stability of the CP decomposition.
It reveals how the small perturbations of the tensor elements translate in the accuracy of
the factor matrices” estimates. The result has led to derivation of a novel CP decomposition
algorithm for high-order tensors, see [19].

3 Conclusions

The presented dissertation summarizes author’s contribution to different areas of statistical
signal processing in the last twenty years. The underlying theme linking the collection of
seven publications that comprise the dissertation is the computation of the Cramér-Rao
bound. The computation of the bound has helped to understand the relation between the
available data and its information content about estimated parameters of the models in
the sinusoidal frequency estimation with slowly varying parameters, in nonlinear filtering,
smoothing and tracking, in the underwater DOA estimation, in the independent component
analysis and in the canonical polyadic tensor decomposition. A high interest of the research
community in these areas is proved by a significant impact of the presented collection of
articles, which is about 589 citations according to the Thomson Reuters citation index (with
self—citations included, for simplicity).
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Posterior Cramér—Rao Bound for
Adaptive Harmonic Retrieva}

Petr Tichavsky

Abstract— The problem of adaptive purameter estimation for a single
nonstationary neisy cisoid, where the sinusoidal frequency evolves ac-
cording to Gaussian random walks, is studied. The lower bound on the
minimum mean-sguare estimatlon error, which was derived by van Trees,
is evaluated for the problem. 1t is shown that two estimation methods
attain this lower bound,

1. INTRODUCTION

The problem of recursive estimation of parameters {frequencics
and amplitudes} of multiple sine waves in noise has received a great
deal of interest in the literature. The problem can be alternatively for-
malated as adaptive line enhancement of the signal or as elimination
of a sinusoidal interference. Several algorithms for solving this task
have been derived, and their properties have been analyzed. The most
important procedures include the adaptive notch filter (ANF) in many
variants and modifications; cf. [1], [2] and the refercnces therein
Another method is the multiple frequency tracker (MFT) [3], [4]).

For stationary signals, the minimal variance of any unbiascd
estimater is given by the Cramér-Rao lower bound (CRB); cf. [5]. In
particular, for the above-mentioned estimation problem, the bound is
proportional to 1/n* and 1/5 (where » denotes the size of the data
sample) tor the frequency and the amplitude estimates, respectively,
of. [6]. Thus, for a statistically efficient recursive estimator, the
variance of the estimation error tends to zero as » — >c, implying
that the update in the parameter estimates tends 10 zero or, loosely
speaking, that the algorithm's gain tends to zero.

In on-line applications, however, it is often desired that the gain
be nonzero in order (o preserve the algorithm’s tracking ability under
sudden parameter changes or drift in the measured data. In these
cases, the variance of the parameter estimates depends on the effective
memory length of the algorithm, and thus, for sufficiently long data,
it ne longer depends on the actual length of the signal processed.
Some general results on the asymptotic distribution of exponcntially
weighted prediction error estimators are given in [7]. The tracking
scenario, where the drift in the parameter vector is modeled as a
random walk, is studied in [8].

The case of slow drift in the sinusoidal amplitudes and frequencies
is highly relevant in many signal processing applications, where
the classical cisoid-in-noise model is too conservative to accurately
describe the underlying data generation process. Some analytical
expressions for the varance of the frequency estimation error for
different algorithms have, among other things, been derived in [4],
{9}, and [10]. In common for the variance expressions in the papers
cited above is that the frequency estimation variance congists of two
terms: one corresponding to the additive measurement noise and one
term related to the random walk modeled frequency drift. A question
of considerable theorctical interest concerns the lower bound on the
estimation accuracy for this problem.

Manuscript received June 20, 1994, revised November 28, 1994, This work
was supported by Grant 201/93/0233 of the Grant Agency of the Czech
Republic. The associate editor coordnating the review of this paper and
approving it for publication was Dr. R, D, Preuss.

The aathor is with Institute of Information Theory and Automation, Prague,
Crech Republic.
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The assumption that the parameters of the signal evolve according
to a random walk basically mecans that these parameters are con-
sidered to be random. This implies that the classical CRB is not
applicable in this case. Fortunately, a lower bound on the minimum
mean-sguare error in estimating a random parameter alse exists; see
pp- 7273 of [5]. Since the bound has, in principle, similar form
to the standard CRB, we call it, for easy reference, the posterior
Cramér-Rao bound (PCRB?}.

In this correspondence, we consider a signal consisting of a single
nonstationary complex-valued sinusoid (ciseid), embedded in additive
(Gaussian white noise with zero mean and a known variance. It
is assumed that the instantaneous frequency of the cisoid evolves
according to random walk, namely, that the increments in the
frequency are independent Gaussian random variables with zero mean
and known variances. In addition, it is assumed that the sinuscid has
a known constant magnitude, initial frequency, and phase. For this
model, we calculate the PCRB for estimation of the instantaneous
frequency at time instant nn > 0 and find lim,, ... PCRB, which we
cail LPCRB.

The LPCRB is compared with the analytical expression characteriz-
ing the large sample performance of the ANF and MFT in estimating
the slowly varying frequency in the given medel (cf. [4]). Tt is shown
that both the procedures attain the LPCRB so that they achieve the
minimum attainable mean square estimation error.

II. PosTERIOR CRAMER-RAD Bounn

[n the classical parameter estimation, it is common to consider
an observation (random} vector x = [(xry, .- . :r,.)"r with joint
probability density py|o({X | @), where § = (4., --- .87 is the
parameter vector. In this correspondence, it is assumed that 8 is a
random vector with given o priori probability function py{€}), as in
the Bayesian statistics. Then, the joint probability function of the pair
(x. A is given as px p( X, @) = peo{ X | 2] pe(9O),

Consider the task of estimating the parameter # by means of a
function of x, § = g(x), and assume first that ¢ is a scalar r = 1.
It is wefl known, cf. |5], that the best estimator of # in the sense of
the least mean square error is the conditioned expectation E(# | x).
In other words, var {E{# | x)} is the universal lower bound for mean
square error of estimating ¢ by functions of x.

However, it may occur that the estimator E(# | x) is represented
by a complex expression, and thus, it may be difficult to calculate 1ts
variance. The alternative lower bound, which was derived in [5] and
denated here by PCRE, can sometimes be more easily evaloated.

In the case of the multiple parameter estimation {r > 1} the bound
has the form

v 2 E{lgx) - tllatx) ~ 8" } 2 37 (1
where J is the » x » matrix with the elements
8 log px0(X.9)
08,08,
and the inequality in {1} means that the difference V —J7' is a
positive semidefinite matrix. Note that J is a counterpart to the
Fisher information matrix; for easy reference, it 15 called the posterior
information matrix. The matrix can be decomposed into two parts:
IJ=In+dr (3

where J;; stands for the standard Fisher information matrix, repre-
senting the information obtained from the data, and the matrix J;

J‘J:E|t— j:l.""l" (2)

1053587 X/95504.00 © 1945 1EEE
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represents the a priori information matrix

_ & log pxalX1€)] . . _
JDU—E[—W Lj=Ll-.r %
o & log pp(©) R
J}u—EI: Tet-—a(T} 1._}—1."'.1". (5)

It is also worth noting here that, in contrast with the standard CRE,
g{x) need nol be an unbiased estimator of #.

The full statement of the theorem follows.

Theorem I: Let 8 be a random r-dimensional vector, and letr x,
which is the observation vector, have the jeint probability function
jix.8(X, ©). Let # = 3(x) be an arbitrary estimator of the parameter
#. Assume the following

1} The matrix J, which is defined in (2), exists and is regular.

2y (Opx ol X, @)/O6) s absolutely integrable with respect to

X and @ for all § = I, .

3 (el X, ) 1/00,86;) is ab‘;olutely mlcgrablc with TE-

spcctlonnd()forall.* i=1

4} The conditional expeclation of the ermor, glvcn X, i1s

Be) = [ [#(X) - O)px | #(X |O}dX. 6)
It is assumed that
lim B(O)pe o X8 =0 (7
. li“i Bl (X9} =0 (8
for i = 1,---.r,
Then, the inequality {1) holds.
Proof: See [5]. | ]

In the special case, when only the ith component of the parameter
vector # is estimated, #, = g,(x), the PCRB, similarly to the standard
CRB, is given as

El{g:(x) -8 > 37! (9)

whete |-]ii denotes the {4, {}th element.

IMI. CaicuLamion of THE PCRB

In this scction, the PCRB is calculated for the estimation problem
of a single noisy cisoid with slowly varying frequency. The signal
model has the form

t=0.1.2 - n (10)

"._
g =mge T+ oy

where s is the magnitude, 7, is the instantaneous phase of cisoid
at time instant ¢, and { ¢} is the noise. The instantaneous frequency
15 defined as the one-step increment of >

...... t=12 - .,n an

=12, n (12)

€ = Wt — |

and assume that

Al: {¢r} and {¢/} are independent sequences of independent
random variables with zero mean values and variances o2 and ~°,
respectively; {r,} is Gaussian, and {} is complex circular Gauvssian.

A2: The initial parameters of the signal, ie., 7y, wo, and mq are
known constants.

The main problem is to estimate the parameter vector

B={w. . (13

win }

on the base of the data x = (y1. --- .y}

IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL. 43, NO. 5, MAY 1995

Assumption Al implies that the evolution of the sinusoidal fre-
quency is described as a random walk with increments of given
variance. Assumption A2 is not too restrictive if one is interested
in estimating the signal parameters at time instants ¢ 23 ;. since the
frequency is time varying, the exact knowledge of ; and w, for ¢t =
0 is irelevant for large ¢,

The log-likelihood function for our model is given as

el z |yj — g et
+ 2? E{“‘"J _~‘-"_;—l]2
Yol

where £ is a constant that does not play 2 role in further calculations.
Note from (11) that the sinusoidal phase at the time instant # can
be written as

—log px. o X. 6)

(14)

i
x:’t:-p"'[)‘i‘zw_f t=1.2. -,

{15)
By aid of (15} it can be easily shown that
e (ivimor™)
s
1 ..
+ o (2 — wpo = it )
& to Xy 2 - . s
—4——(5 p"aif - ! =3 Z Re (y}ume "J)
ok * g=max{t k)
1
+ e (16)
fork, &' =2, .- . n=1, wherc & ¢+ is lhe Kronecker delta function,
and

2 fﬂrﬂ":k
FA-k’:{"l M=k=+1. ("

0 elsewhere

Similar expressions are obtained for &, & = 1 and L. &' = &,
but they are omitted for brevity. Taking the expectations of the
second-order derivatives, we get the following result.

FProposition 1: The posterior information matrix for the estimation
problem (1313}, under assumptions Al and A2, is given by

&
J.=2"0H,+ La, (18)
- b
where H,, and (3, are the {» X n) matrices
" r—1 n—2 -1
n—-1 n—=-1 n—-2 ... 1
H,=|"—-2 n=2 n-2 - 1 (19}
1 1 1 1
1 -1 (LI 0 0
-1 2 -1 --- 0 0
[ | 2 0 U
G, = i . . . 200
0 0 ] 2 -
0] 0 1] -1 1
| |

'Since w; € {—#, %], the Gaussian assumption imposed on ¢ and used in
{14} is realistic only for -2 << 1,
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Fig. 1. Dlustcaten of the convergence of the FCRB (.24, b {solid lines), w the
corresponding limit PCRB (doned lines), for SNR = () dB and 5 = (1.1, 0.01
and 0.001, respectively (from the top down).

In particular, for estimating the «th instantaneous frequency, we
obtain

E{fin — ]} 2 [(3.07 Jun = PCRB{Z,,). (21
Note that the sarae PCRB can be obtained for the more general model
Y = mye™" 4+ rt > 0, where the magnitudes {m,} are ii.d.
Gaussian r.v.’s, independent of {¢r:} and {e,}, if E{m}} = m.
This ebservation is consistent with the idea of estimating frequency
only from the phase of the data [11].

The main contribution of this correspondence is the analytic
lormwla for lit,, —~ PCRB(.:,), ie, LPCRB{., .

Proposition 2: The PCRB for the cstimation of .. in the modecl
(10)~13). under assumptions A1 and A2, has the limit

fim E{(in — w0} = LPCRB{S,,)
e

2
=2 (—w 4+ Vi + tw) (2
!
where
v =1+ I?+ &0 {23)
g2 ™8
"=~ oy (24)
Proof (Outiine): The night-hand side of {21} is rewritten as
letd 1.0
a, ] = ( v Lok
(2} ] det d,, 25
where Ju 1.n— 1 is the lefi-upper (n—1)x (#—1) submatdx of J..

Using some elementary row and colomn operations, the determinants
in {25} can be written as determinants of five-diagonal matrices, and
finally, by expansicn with respect to their last column or row, they
can be rewritlen into a recursive fashion; analysis of the obtaimed
recursions logether with (25) implies the statement. See [12] for
details. [ ]
It can be scen frem the proof of the proposition that the sume
LPCRB would be obtained under the assumption that g and . are
Gaussian random variables, independent of {c. } and {r, }.

IV. Errlcency oF Two METHODS
The algorithms MFT and ANF that solve the estimation prob-
lem (103<13) for multiple cisoids have been studied in [4). The

1301

algorithms have been analyzed for a sinple cisoid by aid of an
approximating linear filter {(ALF) technique, assuming high signal-
to-naise ratie (SNR = mj/o® 3 1), slow evolution of the signal
parameters (—,2 < 1), and a proper initialization of the procedures.
[t has been shown that for both methods

a? (1= ANl - p)?
mE T4 3A+pll = )
Ca P AP 4 2Mp+ A — 2pA)
T3 pll - ML= ML= )
where A and p are two forgetting factors in the MFT or the pele
contraction factor and forgetting factor in the ANF AL p € (0, 1),
Further, it ¢an be proved that (26) achieves its minimum value for

lim E{{Z —wal'} =

0 —

(26}

+

,\:,\.-%1—% 27
p=pr 1o (28)
where
b= =+ T S {29)
and « was defined in {23). The mirimum value of (26) is
"1_111:1& E{{in —wn ¥Id=dhp=pri=n’ '3 (30)

Comparing the last result with (22) implies that the MFT and the ANF
are statistically efficient estimators of the slowly varying sinusoidal
frequency under the assumptions of the ALF approsimation.

V. CONCLUSIONS

‘The PCRB for the problem of estimation of instantanecus fre-
quency of a single nonstationary c¢isoid in noise has been calculated.
It has been assumed that the evolution of the frequency is modeled
by a Gaussian random walk and that the additive noise is Gaussian
and white. We showed that the twe estimation procedures {the MFT
and the ANF) can, under certain assumptions, asymptotically attain
this lower bound.
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Identification of Qquadratic Volterra
Systems Driven by Non-Gaussian Processes

A M. Zoubir

Abstraci— A nonlinear and time-iovariant systermn representable by a
Volterra series up to second order is considered. Closed-form expressions
for the generalized transfer functions of first and second arder are derived
for non-Gaussian stationary input processes whose trispectrum vanishes.
It is shown that the parameters obiained are optimum in the mean
square sense, Once the system is identified, a closed-form expression for
the gquadratic coherence is derived, This expression simplifies to well-
known results when the system is linear or its input is Gaussian. The
quadratic coherence is validated using simulated data as inpul to a known
second-order Volterva filter with known statistic,

1. INTRODUCTION

The Volterra series provides an important type of representation
for nonlincar models and has been used in many applications. In
this representation, a nonlinear system is characterized by a sel
of functions called the Volterra kernels, which are determined by
“cross-correlating” the system response with its input. A difficulty
encountered in this appreach is to find simple analytical expressions
for the Volterra kernels in terms of the cumulants or equivalently for
the generalized transfer functions in terms of higher order spectra.
There is one special case when one can derive a generalization of the
basi¢ result for linear systems. This is the case where the Volterra
series contains just one term of any order and the input is a Gaussian
process, as studied in [1}. In many applications, it is more desirable
to identify a system with a non-Gaussian input.

The purpose of this paper is to derive analytical expressions for
the generalized transfer functions of Volterra filters of second order
in terms of higher order spectra for a class of non-Gaussian input
processes. This ¢lass consists of stationary processes whose fourth-
order cumulant function vanishes. An outline of the paper follows.

In Section !, a formulation of the problem is given. Section II
discusses the identification of quadratic Volterra filters. Analytical
expressions for the generalized transfer functions of first and second
order are given. It is shown that the derived parameters are optimum
in the mean square sense. In Section IV, a closed-form expression
for the guadratic coherence is given, In Section V, we discuss the

Manuscript received December 21, 1992, revised September 27, 1994, The
assaciate editor coordinating the review of this paper and approving it for
publication was Prof. Dounglas Williams,

A. M. Zoubir is with the Signal Processing Research Centre, Queensland
University of Technology, Brisbane 4001, Austraiia.
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Hy{w)

o{n) ———¢ H— u(n)

H(w, A}

£{n)

Fig. 1. Signal flow diagram of the considered nonlinear system.

estimation of the generalized transfer functions and the guadratic
coherence. Simulation results are ilfustrated and discussed before
conchiding.

1I. PROBLEM FORMULATION

Let :c(n) be a zero-mean stationary random process with discrete
time parameter n = (), £1.22,---. Assume the process y{u) to be
generated by

yin) = Z fiyln — mdz(a)
+ Z ha{n = ni.n — ndr{me{nag) + 2(r)

(1}

whete <(r) is zero-mean stationary modelling noise, and z(n} and
#{n) are independent. For the description of the time-invariam
filter, we have used the notations Fy{n,) and ha{ni. nzl.ny.me =
0,%1,£2.--- for the real Volterra kemels of first and second order,
respectively. Without loss of generality, we assume that fiy (7.5}
is symmetric in its arguments.

A signal flow diagram of the model is given in Fig. 1,
where Hyi(w) = ETFo_hi{m)e™™™ and Ha(w, A} =
o= aahainy, nz) e M A2) gre tespectively, called
the generalized linear and quadratic transfer functions.

By identification of the time-invariant second-order Volterra filter,
we mean determination of its generalized transfer functions H{w)
and Hy(w, A} from second- and third-order spectra of the input and
outpui series. The identification of such a filter has been studied
by Tick [6], who derived closed-form expressions for H, (w)} and
Hy{w, A), assuming x{n) to be a Gavssian process. Kim and Powers
[4] have concentrated on the non-Gaussian case. They propose a
digital method based on a lincar regression derived from (1) that
is solved with respect to H {w) and Ha(w. A} atl a set of discrete
frequencies.

In this correspondence, we derive closed-form expressions for the
system describing generalized transfer functions 5, {w) and Ha{ur, A)
in terms of second- and third-order spectra of the input and output
process for non-Gaussian stationary zero-mean inpat processes whose
fourth-order cumulant function vanishes. Processes with this property
may arise in practice, when they are generated as the sum of
independent processes whose fourth-order cumulants cancel. Another
example is when the process is singly or doubly truncated Gaussian
with a parameter that reduces the fourth order cumulant o zero, In
other applications, we may assume a vanishing trispectrum because
the shape parameter of the distribution is large and fourth-order
cumulants fall faster to zero than third-order cumulants, such as in
the Gamma or K-distributicns often used in radar signal processing.

1053387395504 00 @ 1995 TEEE
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Posterior Crar@r—Rao Bounds for
Discrete-Time Nonlinear Filtering

Petr Tichavsit, Member, IEEE Carlos H. MuravchikMember, IEEE and Arye NehoraiFellow, IEEE

Abstract—A mean-square error lower bound for the discrete- analogous to the CRB for random parameters was derive
time nonlinear filtering problem is derived based on the Van [11]; this bound is usually referred to as the Van Trees vers

Trees (posterior) version of the Cranér-Rao inequality. This ¢ ihe CRB. or posterior CRB (PCRB) [16]. Some properti
lower bound is applicable to multidimensional nonlinear, possibly ' . . .
of the PCRB are summarized in Section Il.

non-Gaussian, dynamical systems and is more general than the . .
previous bounds in the literature. The case of singular conditional ~ Several lower bounds for nonlinear dynamical systems h
distribution of the one-step-ahead state vector given the present appeared in the literature; see the overview in [6]. Howe\
state iSI Cortls(iedféiﬂ-rs'ir\r‘eeeg?ilglgtii)sne(;a;lli;}ﬁd Jgf ti?]fee;gl:ﬁefirst the continuous-time case has received heavy emphasis bt
examples: H : H H : H
of an F:jlutoregressive process, tracking aslozvly \gry?ng frequency the discrete-time case, Wh".:h Is of greater_ practical imp
of a single cisoid in noise, and tracking parameters of a sinusoidal tance. Bobrovsky and Zakai _[2] Were_ the first to apply t
frequency with sinusoidal phase modulation. Craner—Rao theory to scalar discrete-time systems. The bo
was later improved and generalized to the multidimensio
case by Galdos [3]. Both of these bounds were obtained
comparing the information matrix of the original system wi
an information matrix of a suitable Gaussian system. 1
bound in [3] is already quite general, but it still has sor
ISCRETE-TIME nonlinear filtering or the associatedimitations (see the discussion in [6]), i.e., the assumption t
problem of adaptive system identification arise in varioube dimension of the system and measurements are idi
applications such as adaptive control, analysis, and predicticail. Recently, the approach by Galdos has been genera
of nonstationary time series. As is well known, the optimdbr nonlinear pth-order autoregressive processes driven
estimator for this problem cannot be built in general, and d@dditive Gaussian noise with state-dependent gain [4].
is necessary to turn to one of the large number of existingIn Section Il of this paper, a novel and simple derivation
suboptimal filtering techniques [1]. Assessing the achievalitee posterior CRB for the discrete-time multidimensional nc
performance may be difficult, and we have to resort to simulbrear filtering problem that avoids any Gaussian assumpti
tions and comparing proximity to lower bounds corresponding presented. The derivation is obtained from first princip
to optimum performance. Lower bounds give an indication @ind differs from other approaches that instead consider ¢
performance limitations, and consequently, they can also parison of the original nonlinear system with an approprii
used to determine whether imposed performance requiremdirniear Gaussian system. We present an example of a lir
are realistic or not. Gaussian system (which is different from those in [2] a
In time-invariant statistical models, a commonly used low¢B]) that has the same associated information matrix as
bound is the Cramér—Rao bound (CRB), given by the inversdginal system. In Section IV, the lower bound is extend
of the Fisher information matrix. In the time-varying systemfor a frequently occurring case of nonlinear filtering, whe
context we deal with here, the estimated parameter vector lias conditional distribution of the state one step ahead, gi
to be considered random since it corresponds to an underlythg current state, is singular. Note that a special case |
nonlinear, randomly driven model. A lower bound that isimilar extension was proposed in [3]. Section V illustrates

Manuscript received December 3, 1996; revised September 12, 1997§1Rpllcat|on. of the.bou.nd for three Impo'_’tant examples:
short version of this paper was presented at the First European Conference recursive estimation of slowly varying parameters of
on Signal Analysis and Prediction ECSAP-97, June 1997, Prague, Czech gytoregressive process;
Republic. This work was supported in part by Grant 102/97/0466 of the Grant R ki r low . f f inal .
Agency of the Czech Republic, CICPBA and UNLP, the Air Force Office _trac I_ng of a slowly varying r?qu_enCy Of a single ciso
of Scientific Research under Grant F49620-97-1-0481, the National Science in noise (a new alternate derivation of the lower bou
Fo(ljmdation under Grant MIP-9615590, and the Office of Naval Research jp [16]);
under Grant N00014-96-1-1078. . . .

The associate editor coordinating the review of this paper and approving it® tracking parameters of a varying frequency that is mc
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the joint probability density of the paier, ), and letg(z) be holds, wherecy, denotes a constant independent&af Then,
a function ofz, which is an estimate of. The PCRB on the the information matrix in (11) reads
estimation error has the form 1
N ’ B . J=E{X"}. (13)
P =Ellg(x) = fllgle) - 6]} 2 D 9 is estimated by(x) = E(6]x), then (1) is satisfied with
where J is the » x » (Fisher) information matrix with the equality. This is exactly the case for the Kalman filter wh

elements performing the task of linear filtering.
92 log pue(X, 0) Assume now that the paramei@r!s decomposed i.nto Mc
Ji;=E —W i,j=1,---,7 (2) parts asd = [6%, 65]", and the information matrix/ is
LR correspondingly decomposed into blocks
provided that the derivatives and expectations in (1) and (2) A
exist. The superscriptZ™ in (1) denotes the transpose of a J = { Jin Jaé}' (14)

matrix, and the inequality in (1) means that the difference
P — Jlis a positive semidefinite matrix. The proof given idt can easily be shown that the covariance of estimatiofsof

[10] or [11] holds under the additional condition of is lower bounded by the right-lower block of %, i.e.,
| B(O)ps(©) =0, Jlim  B(O)pys(©) =0 Py = E{[gs(@) - 0]lga(x) — 65"}
i=1,-,7 A3) > [Jap = JpadpaJopl (15)

¢ @assuming that/ ! exists. In the following, the matrixXzs —
J,@aJ(;;Ja,g will be called the information submatrixfor

B(©) = / B [9(X) — O] p,je(X|0) dX. (4) Parameter;.

hle )

whereB(@) is the estimation bias conditioned By= ©, an

I1l. A L OWER BOUND FOR THE

Let V andé be operators of the first and second-order partial
NONLINEAR FILTERING PROBLEM

derivatives, respectively
Consider the nonlinear filtering problem

e o 17
Vo = Jo. " 6. (5) Tng1 = fr(@n, wn) (16)
A9 =VyV5, 6) Zn = I (s ) an
where

Using this notation, (2) can be written as ]
system state at time;

Tn

J= E[—Ag log pz,6(X, ©)]. ©) {zn} measurement process;

{w,} and{v,} independent white processes (i.e., ¢
quences of mutually independent rando
variables or vectors);

J=dJp+Jp ®) fn andhy, (in general) nonlinear functions.

The functions f,, and h,, may depend on time:. Further
where Jp represents the information obtained from the datassume that the initial staig has a known probability density
and Jp represents tha priori information function p(x¢). Let the dimension of the statds;, } ber.

Equations (16) and (17) together with(z,) determine
Tp =EB{-A8 log puje(X|0)} (rxr) © unambiguously the joint probability distgrﬁ(buti)on at, =
Jp =E{-Ag log ps(©)} (rxr)y  (10) (zq,---,zn) and Z, = (zo, - - -, z,) for an arbitraryn [2]

Sincep., ¢(X, ©) = p,1s(X|0©) - py(0), it can easily be seen
that J can be decomposed into two additive parts:

provided that the expectations in (9) and (10) exist. Note that X 7=
T is an expectation of the standard Fisher information matrix 2(Xn> Zn) = P(zo) |
over thea priori distribution of 6. I

An alternative expression for the information matrix can b (18) as well as in the sequeb(-)'s refer to (uncondi-
derived from the equality, ¢(X, ©) = pg,(©|X) - p(X). tional and conditional) probability densities of the variabl
Sincep,(X) is an integral ofp, 4(X, ©) over©, it does not depicted in the argument ofs. The conditional probability
depend any longer ofd; therefore, we have densitiegp(xy|xx—1) andp(zx|zy) follow from (16) and (17),

B o1 . respectively, under suitable hypotheses.
J = E{~As log pej(O1X)}. (1) et J(X,) be the (nr x nr) information matrix of X,,

For example, if the posterior distribution éfconditioned on derived from the above joint distribution. The problem th

the data vector: is Gaussian with meafi, and a (regular) & wish to solve in this section is the computation of t
covariance matrixs information submatrix for estimating,,, which is denoted/,,,
xr

B B which is given as the inverse of tiiex =) right-lower block of
—log pe|(O|X) = co+ (0@ - 0,)'S;H(© - 6,) (12) [J(X,)]~ . The matrixJ;* will provide a lower bound on the

p(zlz;) I plarleror). (18)
1 k=1

=
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mean square error of estimating. In the sequelp(X,,, Z,)
is denoted byp,, for brevity.

DecomposeX,, as X,, = [XZ ;, 2T and J(X,,) corre-
spondingly as

A, B,
00 =g ¢
A [E(-AX " log p} E{-A% | log p} 9)
E{-Ax " logpn}  E{—AZ log pn}

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 199

Using the definition ofJ, in (20), we obtain the desiret
formula (21). [ |

Note that the recursion in (21) involves computations w
matrices of dimensiofy- x 7). The initial information subma-
trix Jo can be calculated from treepriori probability function
p(zo)

Jo = E{-A7 log p(x0)}. (29)

A few remarks follow to elucidate special cases.

provided that the derivatives and the expectations exist. Cofw-Additive Gaussian Noise

parison of (16) and (20) gives

Jon=C, —BYAlB,. (20)

Thus, computation of thér x r) matrix J,, involves either

calculation of the inverse dfn — 1)r x (n — 1)7] matrix A,
or inverse of the full(nr x nr) matrix J(X,,).

The following proposition gives a recipe for computivig
recursively without manipulating large matrices suchdasor

J(X,). In particular, an efficient method for computing the

limit of .J,, for n — oo follows from the recursion.

Proposition 1: The sequence€/,,} of posterior informa-
tion submatrices for estimating state vectdrs,} obeys the

recursion
Joy1 =D*2 - D?(J, + D)1 D2 (21)
where
Drlll = E{_A:;Z log p(xn+l|xn)} (T X 7) (22)
Dp? =E{=A7* log p(nsila.)} (rxr) (23)
D3} =E{-A%r,, log p(ensilza)} = DT (24)
D2 = E{—Aizﬁ log p(#nt1]2n)}
+E{-AZ"T} log p(znti|eny1)t  (rxr). (25)

Proof: The joint probability function ofX,,.; and Z,,;
can be written as

A
Pr+1 = P(Xnt1, Zny1)
= p(Xnv Zn) 'p($n+l|Xm Zn)
'p(zn+1|mn+lv X'ru Zn)

=pn - P(@nt1]®n) - p(Znt1Tntr)- (26)

Using (26) and the notations in (19) and (22)—(25), the
posterior information matrix foX,,; can be written in block

form as
A, B, 0
J(X,11)=|BY C,+Di DL 27)
0 D21 D22

Assume that the nonlinear filtering problem in (16) and (:
has the form

Tnt1 = fol@n) + wy (30)
Zn = hp(20) + vp (31)
and that the noise$w, } and {v,} are Gaussian with zerc
mean and invertible covariance matric@s and R,,, respec-
tively. From these assumptions, it follows that
—log p(zp+1]zy)
=a+ %[wn-&-l — Ja(@n)]" Qnt lents = falwn)] (32)
—log p(znt1|2n41)
= c2 + 3[znt1 = hnga(@nt)]”

“ Rt [znt1 = By (@41)] (33)
wherec; and ¢, are constants, and
Dyt =E{[Va, £y (22)]Q [Ve, fo (@)]T} (34)
D2 = —E{V,, f7 (z.)} Q7 (35)
D?LQ = Q;l + E{[Vﬂcn+1h£+1 (In+l)]
rﬁ-l[vwthZﬂ(an)]T}- (36)

The well-known solution of the problem in the linear ca
[with linear functions f,, and g, in (30) and (31)] is the
Kalman filter. This is an algorithm that computes parame
of the conditional distribution of the state, given the data
Z,. The distribution is Gaussian, and its mean and covariz
matrix are usually denotedl,|,, and,,,,, respectively. It can
easily be shown that the recursion (21) ffy is identical to
those that are usually derived fﬁ)r;ﬁ1 from the Kalman filter
equations [1].

In order to compare the result (21) with the PCRB comj
tations in [2] and [3], we find matrice8,,, H,., Q,., andR,,
such that the linear system

(37)
(38)
has the same information matrix as the original nonlin
system; in (37) and (38, } and{%, } are independent white
Gaussian noises with zero means and covariance matjige
and R,,, respectively. The matrices,,, H,, (,,, and R,, can

-/i'n-l—l = Fni'n + 7I;n

where 0’s stand for zero blocks of appropriate dimensions.pe determined by comparing the matrid@§, D12, and D22
The information submatri¥,,,; can be found as an inverseys e original system, which are obtained from (34)—(37)

of the right-lower(r x ) submatrix of[.J(X,4+1)] !
A, B, o
B’l' Cn+Dll D12
:DZZ _ DZI[C +Dll _ BTA—IB ]—1 D12.

J.y1 =D -0 D {
(28)

those of the linear system in (37) and (38), yielding

Dt =FrQ,'F, (39)
D= -FrQ,! (40)
D2 =0 + Hi Rt Ho. (41)
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One possible solution of the above system of equations is additive Gaussian noise considered in the previous seci
F, = — (D2)~1pit (42) this happens when the matri@,, is singular. In order to
" " " deal with these cases, consider the following modificati

Cg" =DRH(D;) 7 D, 43) of the original problem.
R, =R, (44) Assume that the state vectar, can be written in block
H, =R*IDI2) — (D32 )7 Dt (D2 ) 7Y]Y? (45) form as
where A/2 denotes the square root of a positive semidefinite =P
matrix A, assuming that the requisite inverses in (42)—(45) tn = ng) (50)
exist. Note that the above linear filter is different from those '
proposed in [2] and [3]. wherez$ has the lengthr;, j =1, 2, with 7y + 7, =r. The
filtering is described by the set of equations
B. A G?nerallzatlon o . | S—l)—l Fuln, wn) (51)
Consider the generalization of the nonlinear system in (16) @ 1)
and (17) as Tog1 = 9gn(@n, i) (52)
Zn = hp (T, vp) (53)
Tyl = [T, wy) (46) ) ) )
o = Fn(Zry Uy Z s *** 5 ) (47) where f,,, g», and h,, are (in general) nonlinear functions

Again, the task is to calculate the information submatfjx
where m is an integer. It can easily be seen that for th#®r z». The partitioning restriction (51)—(53) of the proble:
generalized system, the whole derivation of (21) can b@;omewg)at general and includes, among others, the
repeated en masse, with only two small differences: First,y; = =5 , Which means that the second part of the st
in the initialization, it has to be assumed that;, ---, z_,, Vector is constant in time, and it can be considered for |
are known constants and second thét, 1 |z,.41, X,., Z,) When there are unknown constant parameters in the mc
in (26) cannot be reduced tp(z,41|z,.4+1) but merely to Note that in [3], the case was considered wihggnis only a

P(Zn+1|Tnt1, Zns o0 v Zn—m+1). The latter term will also function of xﬁf).

replace the former one in (25). In this section, we present first an explicit solution—
recursive equation fod,—for a special case of the systel

C. Time-Invariant Solutions (51)—(53) with a linear functiory,, and then a conceptua

solution for general,.

Case 1—Lineap,:

Proposition 2: Consider the linear filtering in (51)—(53)
and assume that the functigp, is linear so that (52) can
be written as

e®), = GWa® 4 GP2® 4 ¢P2Y), (54)

Now, assume that the functionfs (-, -) and,.(-) are time
invariant (independent of). It can easily be seen that the
matrices DL}, -+, D22 also do not depend on. It can be
shown that forn — oo, the matrix.J,, converges to a matrix
Joo, Which is given as a solution to the equation

Joo =D?* - D?(J,, + DY) D%, (48)

In addition, assume thaﬁ}(z) is invertible for alln. Put
Note that (48) is a discrete-time algebraic Riccati equation. A W

more common form of the Riccati equation is obtained if the L1
recursion (21) is equivalently written as XM =1 . (55)
Jng1 = D2(DIY =Ly (DIY=1pi2 _ p2L(plly-1 e

11y—1 11\—-1 pl2
' J”(i” + Dz? ) lljn(anlQ) D, Let J(X,(LI), x@) be an information matrix derived from th
+ D, =D (D) Dy, (49) joint probability densityp(X{", 22, Z,L), and let S, and
which can be easily proved by simple algebraic manipulation@ be the :nforrr:watlon su(l;)matrlk;:es fr{]”" L "L".] and forz,
Then, putJpsi = Jp = Joo. respectively. Then$,, and J,, obey the recursions
Two popular methods for solving the Riccati equation are Sn-l—l Sn+l Sn-l—l

derived in [5] and [8], respectively; for a more comprehenswg

521 522 523
survey, see [7]. In addition, note that there is an available” nHL Tl Tt

software for solving the equation in Matlab, namely, a function Sn+1 Sﬁ+1 Sﬁ+1 1o 1o 13
DARESOLV or an older function DLQR. Joo+Hy S+ HRT Hy
=M\ (IR +HDT U2+ HEZ HZP | M
IV. A FREQUENT SINGULAR CASE (H2) (HZ)YY  HP
Computation of the information submatrik,, as described (56)
in the previous section, fails if the conditional distribution i {Snﬂ Snﬂ} {Snﬂ}[ 11 e 1[5 . 13 ]
of z,4+1, given z,, is singular, and therefore, the probability S,LJrl S,LJrl Sn+jL i s +

density p(x,41]z,) is not defined. In the case of the (57)



18

1390

where
A A
n= {le JEF} (rxr) 9
Il 0 0
M,=|0 0 I [(r+71) % (r+71)]
a a? Gl
(59)
HI' =E{-A"; (1> 1og Dt (re x 1) (60)
H? —E{-A" glm log 7, } (ry x 72) (61)
H? =E{-A ;ztl log 7, } (r1 % 71) (62)
H2Z =E{-A" '2‘2> log P, } (r2 X 12) (63)
H? =E{-A 2’51 log p,, } (r2 X 71) (64)
H? =E{-A zatl log 7, } (rx r1) (65)
and
I_)n = p[ n+1|‘T"] p[7"+l|xn7 xn-l—l] (66)

provided that the above derivatives and expectations exist.
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or diverges to infinity when at least one of the eigenvalues
(H*)T(JL + HH~! has magnitude larger or equal to on

The matrices/?2 in (69) grow without any bound in genera
If this happens, then the limit PCRB for estimatimél) for
n — oo is the same as it&z) were known. Indeed, these resul
can be expected because if the data bear any information a
the parametetﬁf), this information is accumulated as the tirr
n goes to infinity.

Another example of application of Proposition 2 is given
Example 2 in the next section.

Case 2—Nonlineay,,: The main idea for handling the sin
gular case of the nonlinear filter in (51)—(53) is to “regulariz
the filter, e.g., to replace (52) by a perturbed equation

(2)

Tnp1 o) + w®

= g(zy, z, (72)

where{w(z)} is a sequence of pairwise independ&aussian
random vectors with zero mean and covariance matfix
independent of{w,} and {v,}, with ¢ close to 0. For the
modified system, it is possible to apply the result (21) frc
Section 1lI.

et pe (-)'s and E denote probability densities and th

(59), theI's and O's stand for identity and zero matrices ofXPectation operator induced by the perturbed system (

appropriate dimensions.
Proof: See the Appendix.
Note that the conditional probability
Plzn+1|Tn, xﬁf}rl] in (66) is obtained fronp(z,+1|,+1) by
substituting forz?), from (54).

n+1
A stationary solution fot/,, would be obtained by inserting

Js for J, andJ, ;. Note that the resulting equation no longer
has the form of a Riccati equation, unlike (48) in the previous

section.
For example, consider the above-mentioned case wifén

function

(53), and (72). Note that

pe(@niilon) = (el o) - pe @l lon, 21)  (73)
wherep(z), |x,) is determined by (51), and
—IOg pc’( n+1|$n> -Tfll-t,)-l)
=3t o ||Tn+1 glzn, 2501 (74)

is a constant unknown parameter. Comparing the equation

2 2
£, = o)

with (54), we haveG(l) G(Z) = I, and

wherecs is a constant. The matric3!? D2, for the

e,ny T

GY = 0, where 0’s and’’s stand again for zero and identityregularized system can be written as
matrices of appropriate dimensions. Utilizing the special form

of the matrixM,, in (59), from (56) and (57), the recursions

Ty =HP < ()T 4 HET HY ©7)
Jn-l—l (Jn-l—l)
=(H2)" = (") I+ H TN+ HP) (68)
J i _J22 4 H22 _ (.]12 +H12)T
. [Jll +H11]71(J12 +H12). (69)

can be derived. Note that in the stationary case, whefgtt

H ... H32?do not depend on, the matrix sequencg/it}
converges fom — oo to the solution of the Riccati-type of
equation

= HE - (U + B (0

The sequencé.J}?} either converges to a constant matrix

T2 = [T+ (HR)T (4 + HY) 4
) = (R HY T ER] (1)

D?n:D?n—i__K?n 17]2172 (75)
) ) € )

where D is given as an Eexpectation of the second
order derivative of-log p(x n+1\xn) w.rt. z, andz,, as
in (22)—(25), D??, contains, in addition, an FEexpectation
of the second-order derivative of log p(z,41|Tp+1) W.I.L
andK?,, i, j = 1, 2 are given as an Eexpectation of

@ ) H[2. In particular

the same derivatives &ff|z, ), —g(zn, 2,3,

KM =EA[Vs, 0" |[Va, o' 1"} (76)
K2 =[EA[Va, g1V, 0T} E{Va g™ (77)
EAV,w ¢"lIV,0 "'} —EAV, 0 ¢"}
22 — n+1 n+41 ntl
o _Ef{[vwffilgT]T} I
(78)



19

TICHAVSKY et al.. POSTERIOR CRAMR-RAO BOUNDS FOR DISCRETE-TIME NONLINEAR FILTERING 1391

where the arguments gf are omitted for brevity. The infor- 5
mation submatrix for the original system will be obtained from
the result (21) in the limit — 0

g -

— 1 — 1
Dy =l | D24 LK, - (D24 L)

—1
— 1 — 1
° (Jn + Diyln + g Kal,ln) (Di:l?n + CKal,Qn):| . -

(79)

An example of application of (79) is given in Example 3 in
the following section.

a - ) s ' " 1 4
V. EXAMPLES 105 02 03 06 a8 1

Example 1—AR Process with Time-Varying Parameters:

Consider a scalar-valued random procés,$} and introduce Fig. 1. Fi‘sher infqrmation for slowly varying parameter of an AR(1) proce
the notation as a function of this parameter f6 = 10=2, 10—3: and10~* (from the

bottom up), respectively.

Zn = [Z'n, Zn—1y """, Zn—r-l—l]T- (80)
that z,, fluctuates around a mean valefor a considerably
long period of time. Then, the covariance function {af, }

Zntl = TE 120 + U (81) is approximately equal to the covariance function of an /

process with parametef. The matrix Z, in (85) can be

wherez,,;; is a vector of instantaneous autoregressive coggplaced by a covariance matri¥ of the above process
ficients at time instant, and{v, } is a Gaussian white noisewhich is a function ofz. Note thatZ is independent of the
with zero mean and variane€. Further, assume that, has variance of innovations2. Some methods for calculating th
Gaussian random increments covariance matrix of an AR process are presented, e.g.
[14]. For example, for the first-order autoregressive proc
[abbreviated as AR(1) in the sequel]
where {w, } is white, independent ofv,}, zero mean, and 1
has covariance matrice®),, }.

The system (81) and (82) has the form of (46) and (47). The
information submatrix/,, can be obtained by a straightforwarcholds. Herez is restricted to the interval—1, 1) to assure
application of (21) and (34)—(37). The result is stability of the model. If, in addition, the matrix sequent
{Q.} is constant,Q, = @, and it is possible to calculate

Let z, obey the recursion

Tntl = Tpn + Wp (82)

N

= -2 (87)

11 pl2 _ -1
Dg2 - ?n =Qn (83) the limit information matrix (which is a scalar, in the case
Dy =Q," +Z, (84) » = 1) from the equation
where Joo=Q ' +Z - Q) +Q7HTTQ7E. (88)
_ =2 T
Zn =0 Blznzn } (85) In particular, for the AR(1) process, we obtain the solution
so that )
Joo = ————~ |1 +/1+ 4 *11——2}. 89
Jeri = Q7+ 2 - QR+ QIO (89) = | R

Note that the optimum estimate af, from the dataZ, in Numerical values of (89) fof) = 10~2, 10~2, and10—* are
the mean-of-square sense is the Kalman filter; the conditiomdbtted in Fig. 1. It is shown that the information about tl
distribution of z,, given Z, is Gaussian. Let,, and%,, parameter increases rapidly if the pole approaches unity.
denote parameters of this distribution, namely, the mean atheé pole well separated fromtl, i.e., Z ~ 0, it holds that
the covariance matrix. As mentioned in the introduction, thé, ~ Q1/2.
PCRB is tight in this case, and, is equal to the expected The matrix.J,, in (88) [or the corresponding scalar in (8¢
value on;ﬁl. Note thatE;ﬁl in the Kalman filter obeys the in the special case] describes the information content f
same recursion ad,, with the exception thatZ,, in (85) is the AR process bears about the fluctuating AR parame
replaced byo—? z,,zX without the expectation operator. This information content depends on the actual value of
In order to achieve practical conclusions from the abowstimated parameter. If it happens thaf, is small and,
theory, assume that drift of the autoregressive parametercansequently, that the limit PCRBZ! is large, it indicates
slow, i.e., that the trace of),, is much lower than 1, and that the assumed data model might not be appropriate.
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Example 2—Sinusoidal Frequency Estimatidn: this sub- 22 g 2mg %3 _ 2mg + L 97)
section, the developed methodology is applied to computation " " gz 2 2’

of the posterior CRB for tracking parameters of a single no'?Xsertlng the above relations into (56) and (57) and we ¢
cisoid with slowly varying frequency. This computation is

. | after some simplifications, (98), shown at the bottom of 1
easier than those recently presented in [16]. Second, as a eg-e where
cial case of a single time-invariant frequency, the well known > '
Craner—Rao bound by Rife and Boorstyn [9] is derived. d, = det J, = J&¥JE2 — [Jo#)2. (99)

The signal is assumed to have the form
- In (98) and (99),Jy«, Ju¥, and J¢¥ denote elements of the
Zn = mo e +u, n=0,1,2--- (90)  matrix J,,.

where The stationary solution of (98) can be found by putti
Jn = Jn41 = Joo. After excluding the termg/¥ and J£¥%,
a fourth-order polynomial equation fof is obtained. This
equation can be shown to have only one positive real-val

mo magnitude;
v, instantaneous phase of cisoid at time instant

{vn} noise. root. The final result is
The instantaneous frequency (denoteg) is defined as the ' B2
one-step increment op,,. Thus, the signal with randomly h -
varying frequency can be described by the state vector J. = 1 4+h (100)
zy, = (w ) (91) IR n2 Z_h?)
and time update of,, is given by the pair of the equations where
T = T )’IL 92
Wntt =@ :’i—_c o4 §93; h=w+vVw?+4dw (101)
PrL = Pn Tl = Pn W T O w =T+ /T?+8C (102)
It is assumed thafv,, } and{e,} are independent sequences , md
of independent random variables with zero mean values and =~ PR (103)

variancesr? and~?2, respectivelyyec, } is Gaussian, anw,, }
is complex circular Gaussian (i.e., the real and imaginary p rﬁ%e
of {v,,} are independent normally distributed with zero mean$

limit PCRB on the instantaneous frequency is equal to
upper corner element of !, i.e.,

oo !

and equal variances?/2). Next, assume that the probability . o w2/ Tepr—1 4
distribution of the initial instantaneous phase and frequency LPCRB(Gn) =" = (J) /I = h
is known. 72 5

Obviously, in the standard formulation, the covariance ma- = w (‘w +Vw + 4w) (104)

trix of the system noisev, = (e,, €,) is not invertible,
and the conditional probability(z,+1|z,) is singular. The
calculation of the information submatrix as in Section Il fails,
but it is possible to apply the approach developed in Section l? puty

which coincides with the result derived in [16].
Finally, let us consider estimation of stationary frequens
tv2 = 0. Then, (98) is reduced to

with 28 = w,, andz'? = ¢,,. Comparing (93) with (54), we g fsnd fog 1
get G<l> =0, andG(2) G(?’) = 1. The assumed probability ntl = eI
distributions of the noisde,, } and{v,} imply that Jew —2Jee 4 Jee  Jee — Je¢
~log plz} ) = = 1og p(wis]wn) ol N T 2m0 - (105)

—ert o a—w)? (94)
* 2v2 e For Jy = 0 (no a priori information about the frequency an

—1og p(znsi|tn, 90521) = —10g P(Znt1]|n, Wrt1) phase), the recursion (105) has a solution
1 (P twn 2 " 2m3
=cs+ 5 moc' i) — P Jee = = (106)
(95) n—1 2
— P _ 1\
wherec, andc; are normalization constants. A straightforward Tn” Z I n(n—1) o2 (107)
calculation of (60)—(65) gives _" t 2
1 1 ad wv n(
11 12 13 J —-2J;7) = —1(2n-1 108
H'= =, HP? =0, H® = —— (96) 2_: =n(n—1)(2n )3 - (108)
Y v -
. V2d, 4 JE© — 2J99 4 JP —Y2dy + T3¢ = JE¥
Il = 55— 2 (98)

ww 3y 2 1198}
L+ 25 R+ TSP I A I R0 (142 T)
g
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The PCRB on the frequency is equal to the left-upper corner M1 0 0
element of J71, i.e., D2 — 00 0 (120)
g, n 2 2
PCRB(@n) =[5 — (Ji%)2/J9] 0 0 =5
6 2 I
= 0_2 (109) " 0 0 0
n(n? —1) mj K. =10 acn ben (121)
which coincides with the CRB for the problem [9]. :0 be,n
Example 3—Sinusoidal Signal with Sinusoidal Phase Mod- 0 0 0

ulation: Consider a sinusoidal signal as in (90), define the K§,2n =|aen —1 —=b.n (122)
instantaneous frequeney, of the carrier as a one-step back- b O -1
ward difference of the instantaneous phageas in (93), and [acn -1 —b.,
assume that the frequency evolves in time like a sinusoid K2 =| <1 1 0 (123)
within the range(—x, 7). We refer to this sinusoid as a ' —b., O 1

message and assume that the frequency of the message evolves
like a random walk. Note that an algorithm for tracking'nere
parameters of signals of this kind was proposed in [17]. e n =1+ PEAsin®(¢p + Vy1)} (124)
At each time instant, the sighal can be characterized by a b = —nEAsin(dn + vnp1)} (125)
state vector with three components en K n TPt
An available but tedious method of computing an approxim

T
= [V fns o] (110) value of J,, is to choose a small fixed, do a number of inde-
where pendent simulations of the data according to the “regulariz:
¢, instantaneous phase of the carrier; model, and replace the expectations in (124) and (125)
., instantaneous phase of the message; corresponding sample averages. Then, evald_,:;_ltas i_n (79).
v, frequency of the message. Another approach for computing, can be utilized in cases

. > : 9

Assume that the instantaneous frequency of the carrier eql{vépsen the rate of evolution O'f'T“ L€ _the variancey”, and ‘

€ variance of the observation noise are small. Consi

Wy, = We + 1 oS Py, (111) sequences{v,}, {¢,}. {®¥,} that obey (112)-(114) with

. _ {e. = 0} (this is called an “equilibrium state” in [15]), anc
wherew, is the central frequency of the carrier, ands the 555ume that the probability densities pf, }, {¢n}, {¢n}

maximu_m deviation of the carrier frequc_anc;_/ fram. are concentrated in neighborhoods{ef, }, {¢, }, and{z,,}.
The time update of the state vector is given by the set ¢hen . . andsb. ,, are approximated by

equations

~s A 2 27—
Vntl =Vn + €p (112) oo N?n ; b Slil (Fn + V1) (120)
P41 = Pn + Vnt1 (113) be,n R bn = =1 si0($y + Pnta). (127)
Pntl =Pn + We + 1 COS Ppy1 Using the above approximation the limit in (79) can |
=n + we + 1 cos(p + Vng1)- (114) evaluated analytically. The result, which is obtained with t

aid of symbolic Mathematica, is
As in the previous subsection, assume that} is a Gaussian

122 122 v 2 2 yvv
white noise with variance?. The filtering in (112)~(114) and “nt1 = (/7" + J9P =200 + 2 d) /(1442 T) (128)
(90) is an example of the singular case from Section IV Witly”y, = [J2? — J¢% — y2d; +42dob,, + (JE¥ = JZ#)D, ]

nonlinear functiong,, and J(1+~2T0) (129)
P =v, (115)  Jy 5 = (Jn? = J37 = 47da) /(1 + 72 J1Y) (130)
@ =[hn, on]” (116)  J2%, = [J2? + D2 JEP — 25, I3 + 42 (dy — 2bydy + B2 d3)]
1 2 yvv
—_ log p(wgll_i)_l‘ﬁlfn) =Cg + W (Vn-l—l - Vn)2 (117) . /(1 + Wi‘]’n ) _ (131)
I =8P = b J 2P + 42 (do — byds)]
and /(14 42J2%) (132)

11,2 _ (1) 2 22

2litns =9 2 IE JEEL = (JE7 +22) (14222 + 2, (133)

= 5(Pnt1 — Pn — Vug1) o

+ [@nt1 — @n — we — 1 co8(dn + vng1)]?. (118) Where

_ quv jod vd12
A straightforward calculation gives dy =0T =[] (134)
Lo o dy = JUV JPP — JUo Jue (135)
DL =_D2 =0 0 0 (119) ds = iV J52 = [J3e)? (136)

’ "o looo

andJx, ..., J¥¢ are the elements of,,.



22

1394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 5, MAY 199¢

A ey . . , matrix
J(z) = E{—AZ log p(z, 2)}. (137)

exists. Lety = Mz, where M is a constant invertible
matrix. Then, the probability density(y, z) exists, and the
corresponding information matrix for estimatiggs given by

FREQUENCY
fav)

360 a&00 500

g 160 200 _
TIME Jy) =M~ J(z) M~ (138)

X 19°
f’ ' Proof: The proof is based on the well-known rule fc
£2 1 change of coordinates of the estimated parameters (see,
& 5 [13]), is straightforward, and is therefore omitted here. m
g Proof of Proposition: Let p,, denote the probability den-
! T sity of the triplet[X{", {2, Z,]
055 0 200

y * : - A
Time °P0 400 500 pn 2 p(XP, 2P, Z,) = p(X V1, &P, 2P, Z,). (139)

Fig. 2. Instantaneous frequency of the carrier of a sinusoidal signal and {heyill be shown by induction thapn exists.
PCRB on the signal frequency as functions of time in the model consideredThe information matrix that corresponds to the tripl

in Example 3. . .
[X,(f_)l, x%”, acﬁf)] can be written in block form as
To illustrate the above result, consider a signal of the length Ay B, C,
N = 500 with the following parametersm3/as? = 1/2, JXW 2D @y~ |BT D, E, (140)

7 =0.02, w, = 1.6, 7 =1, 7% = 1074, ¢ = 0. Fig. 2 shows
the posterior CRB on parametey;,, which was derived from
Jn, as a function of time. Simultaneously, the instantaneowdere the blocksd,, By, ---, F,, are obtained as expecte
frequency of the carrier is plotted. Note that the nonlinediens of the second-order derivatives-eflog p,, with respect
character of the signal model implies that the PCRB does rtotX,(ﬂU wﬁl), and z{?.

converge to any limit value fon — oo, but it is periodic in ~ The information submatrix for the state vecter, can

time with the frequency that is twice greater than the frequenbg obtained as the inverse of the right-lower submatrix
of the message,,. In particular, if the frequency of the carrier{J(XT(ll_)l, P, .q:g))}*l, ie.,

is close to its minimum or maximum and its rate of change

T ET F,

F7ll o g12
is low, the amount of information that the signal bears about T A Jat n }
the possible changes of, is small, the PCRB increases, and LIt 2
vice versa. D, En} {BZ} AT B, G
T EY F, crj~m o
VI. CONCLUSIONS _[Pn- BUA'B, E,-BiAJ'C, (141)
A simple and straightforward derivation of the posterior LEY — CR AT B, F, — CLATIC,

_Cramer—Rao lower bound for the Fjl_screte_-tln?e nonllne_ar mte{fonsider the probability density of the quaﬁ[éff(f), wglz)’
ing problem was presented. Explicit realizations of this lower;)

bound were calculated for three important examples. Ty 11, Zn+1], denoted byp,1. Note that two vectors

1) tracking a slowly varying AR parameter; x®, 7 0 0 0 XM,
2) track?ng a slowly varyi_ng sinusoidal frequ_ency; ey 0 I 0 0 e8
3) tracking a slowly varying frequency that is modulated (’ll) =lo o 0 I Zn

by a sinusoid. Tpi1 ) @) 3) JISLQ)

The derived lower bound can be used for evaluating the 95521 0 Gu’ G’ G xgjrl
performance of existing suboptimal methods of nonlinear ()
filtering. It is believed that a similar bound can be derived n—1
for a more general model of nonlinear autoregressive systems PN

=M, (142)
as well. 2
e,
APPENDIX ) ) ) ) @
PROOE OF PROPOSITION 2 obey the linear relationship. Sino&,~’ is assumed to be

regular, it follows thatVZ,, is regular as well. Applying Lemme

The proof of Proposition 2 utilizes the following lemma. 1 ‘j; fo|10ws by induction thap,, in (139) exists for each, and

Lemma 1: Consider the problem of estimating a random i ~
vector z from an observation vecto. Let p(z, z) be the  J(XP, 28 2@ )= M7T2(XD, 2@ 20 Nt
joint probability density of z, z), and assume that information (143)
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IEEE Trans. Aerosp. Electron. Systgl. 25, pp. 590-600, Sept. 1989

[7] V. KuCera, “Factorization of rational spectral matrices: A survey
methods,” inProc. IEE Int. Conf. Contr.Edinburgh, U.K., 1991, pp.
1074-1078.

[8] T. Pappas, A. J. Laub, and N. R. Sandel, “On the numerical solu
of the discrete-time algebraic Riccati equatiotEEE Trans. Automat.
Contr., vol. AC-25, pp. 631-641, June 1980.

[9] D. C. Rife and R. R. Boorstyn, “Multiple tone parameter estimati
from discrete time observationBell Syst. Tech. J.pp. 1389-1410,

. . Nov. 1976.

The second equality in (144) follows from the formulation of1o] D. J. SakrisorNotes on Analog CommunicationPrinceton, NJ: Van

the filtering problem. From (140) and (144), it follows that Nostrand, 1970. ) o ,

11] H. L. van TreesDetection, Estimation and Modulation TheoryNew
York: Wiley, 1968.
[12] B. Z. Bobrovsky, E. Mayer-Wolf, and M. Zakai, “Some classes of glol
Cranmer—Rao bounds,Ann. Statist., vol. 15, no. 4, pp. 1421-1438, 19¢

Dnt1 Ipnp(wil.?.l Xr(ll)a 1'53)’ Zn)

'p(zn+l|Xr(Ll)a "I:'SLQ)7 'TS-{)—D Zﬂ)

=P p(x )1 [2a] Dlonsi]n, Tqy).  (144)

J<X1’(ll)7 'TSLZ)7 w’ftlll)

A B C 0 [13] B. Porat, Digital Processing of Random SignalsEnglewood ClIiffs,
n n n NJ: Prentice-Hall, 1993.
BT D, + Hl! E, + H2 H3 [14] P. J. Brockwell and R. A. DavisJime Series: Theory and Method:
- n " " n (145) New York: Springer-Verlag, 1987.
ct (E,+H*)T F,+H? H? [15] P. Tichavsk and P. Handel, “Two algorithms for adaptive retrieval ¢

slowly varying multiple cisoids in noise [EEE Trans. Signal Process
ing, vol. 43, pp. 1116-1127, May 1995.

[16] P. Tichavsky, “Posterior Cramér—Rao bounds for adaptive harm
retrieval,” |[EEE Trans. Signal Processingol. 43, pp. 1299-1302, May
1995.

1 P. Tichavskg and P. Handel, “Recursive estimation of linearly ¢
harmonically modulated frequencies of multiple cisoids in noise,”
Proc. Int. Conf. Acoust., Speech, Signal ProcelSiinchen, Germany,
Apr. 1997, pt. Ill, pp. 1925-1928.

H,lf [18] P. Tichavsky, C. Muravchik, and A. Nehorai, “Posterior C—R bounds

performance of adaptive parameter estimation,Signal Anal. Predic-

tion I, Proc. First Euro. Conf. Signal Anal. PredictioA. Prochazka, J.

Uhlif and P. Sovka, Eds. Prague, Czech Republic, June 24-27, 1

0 (EPT  EDT HP

where H¥, i, j = 1,2, 3 were defined in (60)-(65). The

information submatrix for[w%l), =, x&)rl] then equals

D,+H} E,+H}?

2 (B, +HT F,+H2 HP

Sn+l

13\T 23\T 33
(H:") (H2) H; pp. 153-156.
By
-1
— |or | A7HB., G, 0]. (146)
0
This can be rewritten using (141) as Petr Tichavsky (M'98) graduated in 1987 from the
Czech Technical University, Prague, Czechosloy
1 1 12 12 13 kia. He received the Ph.D. degree in theoretic
Jio+Hy J.o+H H cybernetics from the Czechoslovak Academy
& Sciences, Prague, in 1992.
_ 12 12\T 22 22 23 , ,
Sn+1 - (‘]n + Hn ) Jn + Hn Hn (147) Y He is now with the Institute of Information The
L . .
(HT]iS)T (Hff’)T Hgg = ory and Automation, Academy of Sciences of tt

¥

Czech Republic, Prague. In 1994, he received
- Fulbright grant for a ten-month fellowship at th

. P . . Department of Electrical Engineering, Yale Unive
Combining (143) and the form d#/,, in (59) and (142) implies & sity, New Haven, CT. His current research intere:

include adaptive parameter estimation and spectrum analysis.

Sp1 = M8 M (148)

The statement follows. [ ]
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Abstract

Cramér-Rao lower bounds for the discrete-time nonlinear state estimation problem are treated. The Cramér-Rao bound for the
mean-square error matrix of a state estimate is particularly important for quality evaluation of nonlinear state estimators as it
represents a limit of cognizability of the state. Recursive relations for filtering, predictive, and smoothing Cramér-Rao bounds are
derived to establish a unifying framework for several previously published derivation procedures and results. Lower bounds for
systems with unknown parameters are newly provided. Computation of filtering, predictive, and smoothing Cramér-Rao bounds,
their mutual comparison and utilization for quality evaluation of some nonlinear filters are shown in numerical examples. © 2001

Elsevier Science Ltd. All rights reserved.
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Smoothing

1. Introduction

A recursive state estimator for a nonlinear stochastic
discrete-time system can be designed directly using the
Bayesian approach. As the closed form solution of the
Bayesian recursive relations is restricted to a few single
cases, it is necessary to provide numerical or analytical
approximations (Sorenson, 1974; Kulhavy, 1996). Non-
linear filters based on such approximations generate
estimates which are more or less affected by these ap-
proximations and deviate from the ideal exact solution.
Quality evaluation of the nonlinear filters is one of the
most complex problems in the area of nonlinear estima-
tion. The knowledge of a lower bound for the mean-
square error of an estimate can give an indication of
estimator performance limitations, and consequently it

“This is an expanded version of the paper presented at the 14th IFAC
World Congress, 5-9 July 1999, Beijing. This paper was recommended
for publication in revised form by Associate Editor Hikan Hjalmarsson
under the direction of Editor Torsten Soderstrom.

* Corresponding author. Tel.: + 420-19-7491171; fax: + 420-19-
279050.

E-mail address: simandl@kky.zcu.cz (M. Simandl).

can be used to determine whether imposed performance
requirements are realistic or not.

As is well known, the Cramér-Rao (CR) bound, de-
fined as the inverse of the Fisher information matrix,
represents an objective lower limit of cognizability of
parameters in constant parameter estimation. The CR
bound methodology was extended for random param-
eters estimation by Van Trees (1968). More recent dis-
cussions and extensions of the bound can be found in
Bobrovsky, Mayer-Wolf, and Zakai (1987). The idea of
the CR bound was successfully applied in state estima-
tion for discrete-time nonlinear stochastic dynamic sys-
tems by Bobrovsky and Zakai (1975) and Galdos (1980).
These works are based on a certain kind of “equivalence”
between probability density functions of the original
nonlinear stochastic system and an auxiliary linear Gaus-
sian system. A survey and a detailed critical discussion of
this approach to CR lower bounds for nonlinear filtering
was presented by Kerr (1989). The approach by Galdos
(1980) was generalized for nonlinear pth order autoreg-
ressive processes driven by additive Gaussian noise with
state-dependent gain (Doerschuk, 1995).

An alternative approach to computation of the CR
bound (called also posterior CR bound) for the filtering
problem in discrete-time nonlinear systems was proposed

0005-1098/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0005-1098(01)00136-4
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by Tichavsky, Muravchik, and Nehorai (1998). The idea
of this approach is to regard the state history as a ran-
dom parameter vector. The CR bound for the state of the
system is obtained as the lower right block of the CR
bound for the complete state history. In the basic form of
the bound it is assumed that the state transition probabil-
ity density function (pdf) p(x;+1|X;) exists and is twice
differentiable with respect to both its arguments. This is
rather restrictive assumption because the state distur-
bance may easily have lower dimension than the state,
what follows that p(x;.|Xx) need not exist or is not
continuous. The same problem with singularity was en-
countered in the former approach as well, see Galdos
(1980). One of the special cases, where this singularity
occurs, is the case of nonlinear system with unknown
constant parameters. The CR bound for filtering in such
a system was derived already in the mentioned paper by
Tichavsky et al. (1998). Another special case is a system
with linear state evolution but with nonlinear measure-
ment. The posterior CR bound for one-step ahead pre-
diction in these systems was derived by Bergman (1999).

The recursive relations for posterior CR bounds, based
on derivation techniques using either filtering or one-step
predictive pdf’s, were alternatively derived in the form of
time and measurement update steps and extended for
the general multi-step prediction problem in Simandl,
Kralovec, and Tichavsky (1999). Similar CR bound for
smoothing problem was derived by Bergman (1999). The
CR bound methodology was used for analysis of nonlin-
ear filters, e.g. point-mass filter in a navigation and track-
ing application (Bergman, Ljung, & Gustafsson, 1997),
and also for synthesis of the nonlinear Gaussian-sum
filter (Simandl & Kralovec, 1998).

The aim of the paper is to derive recursive relations for
filtering, predictive, and smoothing CR bounds in order
to present the previous results of Tichavsky et al. (1998),
Simandl et al. (1999), and Bergman (1999) in a struc-
turally unified form, and to make a further extension
of the CR bounds for nonlinear stochastic systems
with unknown parameters, keeping the established
framework.

The paper is organized as follows. After a detailed
specification of the main goal of the paper in Section 2,
a derivation of the recursive relations for the filtering and
one-step predictive CR bounds (in the form of time and
measurement update steps) for nonlinear discrete-time
stochastic system will be shown in Section 3. This deriva-
tion is crucial for expressing structurally unified recursive
relations for multi-step predictive and smoothing CR
bounds in Sections 4 and 5, respectively. Each of the
Sections 3-5 will be completed by a solution of the CR
bound problem for the special case of system with un-
known parameters. Practical aspects of computation of
the bounds and effects of additive Gaussian disturbances
on a simplification of the relation for the CR bounds will
be discussed in Section 6. Two numerical examples in

Section 7 present a comparison of filtering, predictive,
and smoothing CR bounds and the use of the CR bound
for quality evaluation of several nonlinear filters.

2. Problem statement

Consider the problem of estimating a vector of random
parameters 0 = [0, 0, ... 0,]" from a set of measured
data z¥ = [z] z} ... z§]". The joint pdf p(z".,0) is sup-
posed to be known. To simplify notations, the nabla
operator will be used

0 0 0
V" == T~ "_ e ~ A .
601 002 (30,1
The Fisher information matrix (FIM) J(6) for the para-
meter vector 6 is defined as follows

J(0) = — E{V,[Vy Inp(".0)]"} (1)

provided that the derivatives and expectation exist. An
alternative formula for the FIM is

J(0) = E{[V,1n p(z",0)]"V, In p(z", 0)}. 2

Let § = (z") be an estimate of the parameter vector 6.
The mean-square error matrix (MSEM) defined as
T1(0) = E{(0 — 6)0 — 0)"} is bounded by an inverse of the
FIM

o) > J (o). 3)

The inverse J~(0) is called the posterior (alternatively
global (Bobrovsky et al., 1987) or Bayesian (Gill & Levit,
1995) Cramér-Rao (CR) bound and it will be denoted as
C(0). In contrast to CR bound for deterministic (nonran-
dom) parameters, it is not required that & must be unbias-
ed. The only necessary assumption is that both sides of
(3) must exist; see e.g. Van Trees (1968).

The idea of the CR bound for random parameters
0 can be applied to the state estimation problem for
a nonlinear dynamic system (Kerr, 1989; Tichavsky et al.,
1998; Doerschuk, 1995).

Consider the discrete-time nonlinear stochastic dy-
namic system

Xp+1 = (pk(xlwwk)) k = 09 1327---7 (4)
= '}Jk(xlnvk)’ k = 09 1923 LR} (5)

where k is a time index, x, and z, with dim(x,) = n and
dim(z;) = r represent the state and measurement vectors,
respectively, @ (xx,W;) and y(Xx,Vx) are known vector
functions, {w,} and {v, } are mutually independent white
sequences, with dim(w,) = n and dim(v,) = r, which are
described by known pdf’s p(w;) and p(v;), respectively.
The noises are independent of the initial state x, which is
described by the known pdf p(x,).

Suppose that the state transition pdf p(x;|x;-1)
exists and is twice differentiable with respect to both its
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arguments. Similarly, suppose that the measurement pdf
p(z|x;) exists and is twice differentiable with respect
to x,.

The aim is to find a recursive algorithm for lower
bounds of mean-square error matrices of three different
types of state estimates. The MSEM of a state estimate
R/ is defined as

H(lk = E{(Xz - 5‘/|k)(X/ - ink)T}a (6)

where %, is an estimate of the state x, using the
measurements zo,Z,...,Z. The estimate X, is called
filtering state estimate for / = k, predictive state estimate
for / > k, and smoothing state estimate for / < k.

Since the assumption of two-fold differentiability of the
transition pdf p(x,| x,—1) is not fulfilled for an important
practical case of systems with unknown parameters, the
second main goal of the paper is to solve this case as well.

3. Filtering Cramer-Rao bound

A derivation of the CR bound for nonlinear filtering
problem was presented by Tichavsky et al. (1998) and
Simandl et al. (1999). The results have the form of recur-
sive relations for the CR bound setting a lower limit for
the MSEM of a state estimate at each time. This section
is based mainly on Simandl et al. (1999) and its aim is to
show the derivation of recursive relations for CR bounds
of both filtering and one-step predictive MSEMs. The
derivation process and its results will then serve as
a starting point for solving the multi-step prediction and
smoothing problems in Sections 4 and 5, respectively.

A significant attention is paid to a special case of
a nonlinear stochastic system with unknown parameters.
In design of estimation algorithms, the unknown system
parameters can be treated as a part of the system state.
However, a CR bound for such extended system state
cannot be derived directly and has to be treated as
a special singular case. The recursive formulae for filter-
ing in a system with unknown constant parameters was
derived as a special case of a more general result in
Tichavsky et al. (1998). Section 3.3 presents an alternative
derivation of the CR bound in this case, and its extension
to prediction and smoothing is given in Sections 4.2 and
5.2, respectively.

3.1. Fisher information matrix for state history

The main idea of the derivation of the CR bounds
for nonlinear state estimation is to regard the whole
state history as an unknown vector quantity. Let the
complete state and measurement histories up to time
instant k be denoted as x* =[x} xJ ... xf]T and
7" =[z8 z] ... z7]", respectively. Then the state history
x* may be interpreted as a vector of parameters of a ran-
dom measured vector z*. First, a lower bound for a

MSEM of the whole state history will be derived and the
obtained results are going to be used for derivation of
bounds for filtering and one-step predictive estimates at
time k.

First, the filtering estimate is considered. The joint pdf
of the state and measurement histories p(x*,z") may be
written as p(x¥, 2°) = p(z"| x*)p(x¥). Respecting the proper-
ties of the stochastic system (4) and (5), the logarithm of
this pdf can be expressed as

k
Inp(x*,2) = 3 Inp(zlx;) + Inp(xo)

i=0

k
+ ) Inp(xifxi—y). ()
i=1
The (k + 1)nx (k + 1)n FIM for the state history x* can
now be computed according to (1)
Juk(x) = — E{V[Ve Inp(x*, 29]"} (8)

provided that the expectation and derivatives exist.
To simplify the computation of J,;,(x*) the following
notation for n x n matrices is introduced

Kiiy = E{ — V[V, Inp(x;:[x)]"), ©)

MR = E{ — V., [Vy Inp(xis 1 x)]"} (10)
Kiil =E{ = Vy, [V, Inp(xis1|x)]"}, (11)
Li = E{ — V[V, Inp(z;|x;)]"}, (12)

with KiZ it = [Kiih 'Y, i=0,1,...,k,
and
KS = E{ — V,, [V, In p(xo)]"}. (13)

The indexes in the K matrices have the following mean-
ing. The lower index is the time instant of the state
described by the transition pdf. The upper index
expresses the states for which the derivatives of the
transition pdf are performed.

Note that if no information about the initial state is
available, which can be mathematically expressed by
a pdf with an infinitely small information content, i.e.
with an infinite covariance matrix of x,, then K3 = 0.
Hence, such situation does not restrict finding the CR
bound.

Using (7) and (9)—~(12) in (8), it follows that the FIM for
filtering is a block-tridiagonal matrix, having

D=L+ K +Kiy, i=01,....k—1, (14)

and Lﬁ + K¥ on its main diagonal, and K!f1 and
[Kif1T for i =0,1,...,k — 1 on its lower and upper
side diagonals, respectively. Let Jk‘k(x") be decomposed
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into four blocks as
D, K9
K!°

Jklk(xk) = D Kk~ 1k
k—1 k

Kkk1 \ Lk +K’,§j

i | ik 15

21 22
ik | i

where zero block elements have been left empty. For
k =0 it holds Jo‘o( 0)—J0‘0 = +K8

The FIM J,—;(x*) for the pdf p(x*,z*~ 1), with
p(x°,z71) = p(x,), can be derived analogically to the pre-
vious procedure. Since it holds that

p(xka Zk) = p(xka Zk7 l)p(zk |Xk7 Zk7 1)

= p(x", 2"~ )p(zilx), (16)

it can be easily seen that Jy—(x) is equal to Jy(x¥),
except for the lower-right corner block, which is K}
instead of Lf +Kj. Thus it holds Jii—1 = Jijks
Jii-1 =Ji. and JZ-; =K}, and the FIMs Jy;(x"),
Jit1(x* 1) may be expressed recursively as

- [JW I ] 1)
ik (X
LJklk 1 ‘ Jik-1 +LH
ik Jik 0
Jer ) = [ Ik Jik + Koy | KEET! (18)

Lo ki | K
starting from Jo;—1(xo) = J37-; = K. Note that the di-
mensions of the FIMs J,;(x*) and Jy. 1 (x* ') increase

at each iteration and therefore these matrices are not
acceptable as a final result.

3.2. Fisher information matrix for filtering estimate

In this section, recursive relations for FIMs Jy(xx)
and Jy ;-1 (x,) belonging to the state x; are derived. Let

K =[R8 K o Kd” (19)

be an estimate of the state trajectory up to time / given
measurements up to time k. Let the state trajectory
estimate error and the state estimate error be denoted as
" =x" — %" %, = x, — %, respectively. For £ =k,
the MSEM of the estimate trajectory £ will be denoted
IT" and by (3) it is bounded as

T = B[R > I (x5), (20)

Applying (17) to (20) yields

Hklk _ E|:§k1|k[)~(kl|k:|T ik 1k g TI i|

K [XE 1T Ky Xk
J£|}c—1 Jiﬁc—l -1
Z| 2 k k : 21
Jik—1 L + Kg

By comparing lower-right blocks of the matrices on both
sides of the inequality it is possible to formulate an
inequality for the MSEM of a filtering state estimate at
time k:

Hklk = E{ik\kiak} > Cklk = [Jﬂkl(xk)]zz» (22)

where Cy, = J,(]kl(xk) is the CR bound and Jy,(x;) is the
FIM for an estimate Ry, and [Jgd(x"],, denotes
the n x n lower-right block of the inverse of the matrix
Jk|k(Xk)~

The FIM Jy i (xx) = C,akl, which will be called the filter-
ing FIM, can be obtained from J;;;/(x*) taken in the form
on the right-hand side of the inequality (21) using the
block-matrix inverse (A.2) and (A.3) (see Appendix A).

Hence
Ck_\kl =L + K{ — k|k 1[Jk|k71]71J11|%c—1- (23)

The same routine can be followed for a one-step
predictive estimate Ry 1 as well. The MSEM IT** Lk —
E{x** K& 1T is bounded below by Jiity (x* 1) and
from (3) it holds

<Kk oklk7T
l—[k+1|k_E|: KR KR 1 :|
Kee 1 [X1]"

< |:J11}r1|k Jl%<2+1|k:| -
et Kiti
For the MSEM of the predictive estimate Xy the

following inequality, analogous to (22), is obtained:

= Ck+1|ka (25)

Xk+1|kxk+1\k

= Jid (). (24)

— 3 T 1
Hk+1|k = E{Xk+1|kxk+1|kj

where Cyy 1jx = Ji i1 ju(Xe+ 1) is the CR bound for a one-
step predictive estimate Xy 1k, and Jy4 x(Xe+1) is the
FIM for Xy, equal to the lower-right block of an
inverse of Jy 1 1 (x** ).

The FIM Jj 4 1 x(Xk+ 1), i.e. the inverse of the CR bound
Cy 411k, can be expressed as

k+1|k[Jk+1|k] 1Jk+1|k (26)

Using (18), (A.2), (A.3), (15), and (23), the following recur-
sion for the one-step predictive FIM is obtained:

-1 _ yk+1
Civie = Kii1 —

CI:+11|k = K’Jﬁi% - Kﬂ}'k(Kﬁ+1 + Clakl)_lKﬁkl—l' 27

Finally, relation (23) for the filtering FIM Cy;! will be
treated using (26), then

Ck_|k1 = Ck_\kl— . + L. (28)
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Relations (28) and (27) describe a recursive computation
of the CR bounds for filtering and one-step predictive
state estimates. Initial conditions for this recursion are
given by Col; =K§. Equation (27) represents trans-
formation of the information matrix of the system state
from time k to time k + 1, without any new information.
The matrix Lf in (28) represents the new independent
information about the system state contained in the ob-
servation z;.

Note that a generally different CR bound for the state
x, could be theoretically obtained from the marginal pdf
p(xx, 2 derived from p(x*, z"). It follows from Proposition
1 in Bobrovsky et al. (1987) that such a bound would be
tighter, in general. However, it is extremely difficult to
compute the marginal pdf and consequently the whole
latter bound.

3.3. CR bound for filtering with unknown parameters

Consider the following extension of the nonlinear
stochastic system in (4), (5):

Xp+1 = (pk(xk,a,wk), k= 0, 1, 2, ey (29)
= ‘Vk(xksaavk)s k = 07 172’ e (30)

where a is a random vector parameter with dim(a) = m,
independent of the initial state X,, p(xo) = p(Xola),
and with a known, twice differentiable pdf p(a). The
task is to compute the filtering CR bound for the
pair (x;,a). A valid CR bound can be computed
also in a case when no prior information (no p(a)) is
available for the same reason as in case of x,; see the note
after (13).

The nonlinear stochastic system in (29) and (30) can be
treated in the same way as the system in (4) and (5), if the
task is to construct a nonlinear filter for the system. It is
sufficient to consider an extended system state vector
& =[xf af]" and let a,,, = a, for all k with a, = a.
However, this approach fails if one wants to compute the
corresponding CR bound. Recall that computation of the
CR bound assumes existence of the transition pdf and its
second-order differentiability. However, these conditions
are not fulfilled for the transition pdf of the extended state
(&1 11&). The reason is that the parameters a, are not
affected by any disturbances. Thus the transition pdf
p(a; 1 1]a,) is the Dirac function and the pdf of the ex-
tended state is not differentiable with respect to a,. In this
sense, computation of the CR bound for the stochastic
system (29) and (30) is a nontrivial generalization of the
recursions (27) and (28).

First, a recursion for the filtering CR bound Cy; for
(xx,a) will be derived. Let the inverse of this matrix be
decomposed in blocks as

JXX xa
Cad :[ e ""} 31)

aa
K|k K|k

Again, the derivation will start with the expression for the
logarithm of the pdf of the joint state and measurement
histories,

k
Inp(x*,a,2") = Y Inp(z|x;.a) + Inp(x,) + In p(a)
i=0

k
+ Z In p(x;[x; - 1,a). (32)
i=1
Let matrices Ki, ;, K%l KiTl and L! be defined as
in (9)-(12) with the exception that p(x;. {|x;) and p(z;|x;)
are replaced by p(x;.|X;,a) and p(z;|x;, a), respectively.
Let the additional notations analogous to (9)-(12) be
introduced.

) = E{ = Vy [Valnp(xi [x 2"}, (33)

1 = B = Voo, [Va Inp(xi o xi, 2)]T), (34)

Ky = E[ = Va[Va In p(xis 1 Ixi2)] "), (35)

L = E{ — V, [V, In plzfx;.a)]"). (36)

L{ = E{ — V,[V, In plzix;.a)]"), 37

Ao = E{ = V,[V,Inp(a)]"}, (38)
k—1

Av=Ao + Lo+ Y (Lf+ K9 + K, (39)
i=1

G =LY+ K+ K¢, (49)

where i=0,1,...,k, and L¥=[L#]", K<=[K%*]",
o =[K%,]". The matrices K¥ K% ,, LY and G;
have the size m x n, K{, {, L¢, and A, are m x m matrices,
and K¢ appearing in (40) for i =0 is an mxn zero
matrix.
Now, the FIM for the pair (x*,a), defined as

Jk|k(xk7 a) = - E'{ka,a [ka,a ln P(Xk, a, Zk)]T}a (41)

provided the expectation and the derivatives exist, can be
written as

oW e
Jk|k(xk7 a)= Jl%ﬁc Jl%ﬁc Li* + Ky (42)
G L+ K Li+ A

where G' =[G, G; ... G;].

The filtering CR bound Cy; for (x,a) is found as the
lower-right (n + m) x (n + m) block of J;!(x*,a). The de-
tailed derivation is shown in Appendix B. The block
elements of Cy)}, as denoted in (31), obey the following
recursive relations

Jifi = Jidi—1 + L, (43)
Jifi = Jifi-1 + LI (44)
Jii‘k = Jz'\lk—1 + LZ; (45)

where the one-step predictive FIMs are given as

xx k+1 k+ 1,k g — 1k +1
Jk+1|k :Kk+1 _Kk+1 Akk Kk+1 5 (46)
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Ji e = K — KEE R AG AR 47) yielding the following recursion

I = It + Kl — ARAG'AR, @8)  Cop =K/ — KK 4 Gy KT (52)
where A, =55 + K/, A% =J% + K%, and for / =k +1,k+2,... . The recursion starts from the

5 = [A%]". In (46)—(48) it holds that / = k.

The initial conditions for the recursive relations
(43)-(48) are J§j-, =K, J5-; =Kg*=0, and

0l—-1 = Ao. The relations describe a recursive block-
wise computation of the CR bound for filtering with
unknown parameters. Note that (43) and (46) are exactly
as (28) and (27), respectively.

4. Predictive Crameéer-Rao bound
4.1. Derivation of multi-step predictive lower bound

The recursions for filtering and one-step predictive CR
bounds derived in Section 3.2 can be easily generalized
for the general prediction problem (Simandl et al., 1999).
In particular, it is possible to derive the CR bound for
a multi-step predictive estimate X, with / > k, using the
joint pdf p(x’,2"), in the similar way as for the filtering
and one-step prediction problems. First, the derivation of
the two-step predictive FIM, i.e. / = k + 2, will be shown
and then this case will be generalized for a multi-step
prediction (¢ = k + 2) by the mathematical induction.

The logarithm of the joint pdf p(x**2 z* can be ex-
pressed as

k
Inp(x*"2,2 = )" Inp(z|x;) + Inp(x,)
i=0
k+2

+ Z In p(x;[x;- 1) (49)
i=1

and it could be rewritten using the one-step predictive

joint pdf

k+2 ky __ k+1
7Z)_

In p(x In p(x azk) + In p(Xp 4 2 X+ 1)-

Thus, the two-step predictive FIM represents an expan-
sion of the one-step predictive FIM, which is known from
(18), by three additional blocks,

ik 1 Tt 1 0
Jk+2\k(Xk+2)= JI%Jlr1|k Jlfil\k_’_Kl]zi% KZi%,k-FZ )
Lo Ere [ K
(50)

Obviously, it is possible to follow the same steps which
lead from (18) to the relation for the one-step predictive
FIM (27). Then
Codape = Ki23 — KEE 3 I KED S + Cdyp) ™ TKEES T2
(51)
The derivation of the two-step predictive FIM can be
inductively applied to a general (/ — k)-step prediction,

filtering FIM C;;} and the K matrices are given by
(9)-(11) without any modifications.

The relation (52) represents the final result of the multi-
step predictive CR bound problem.

4.2. Predictive CR bound for system with unknown
parameters

It is easy to see that predictive CR bound for systems
(29) and (30) with unknown parameters obeys the same
recursions as the one-step predictive CR bound derived
in Section 3.3. Let the predictive FIM C,};' be composed
of four blocks J77, J7jk, J7ik, and J7j; in the same way as
in (31). Then, similarly to (46)—(48), it holds that

T =K, — KA KT, (53)
i =K — KO/ A AT (54)
Iofe = I 1+ K7 — AP A AT (55)

for=k+1k+2,...

5. Smoothing Cramer-Rao bound
5.1. Derivation of smoothing lower bound

Consider again the system (4), (5). The derivation of the
smoothing CR bound for a smoothing state estimate X,
0<7/ <k-—1,is based on the FIM Jk|k(xk), introduced
in (15), and on a suitable decomposition of this matrix
(Bergman, 1999). Note that Jy,(x*) is the lower bound
of the MSEM IT** of the estimate trajectory % from
(19) consisting of the smoothing estimates KXo,
Xik>---»Xk—1x» and the filtering estimate Xy. Thus,
smoothing CR bounds should be implicitly contained in
Juk(x¥). The decomposition divides Jy,(x¥) into blocks
which correspond to time instants 0,1,...,7, and
{+ 1,/ +2,...,k, respectively, as

Lo | S
Jklk(xk): T
Siwc | Wr
D, K{!
K!°

k—1.,k
Dk—l Kk

Kt L+ K

(56)
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where zero blocks have been left empty, and the block
I';, can be also expressed as

I I }
r, = |: . (57)
v I I+ Ko

The matrix I';, is almost identical with the FIM J,,(x’),
except for the matrix K7, ; in the lower-right block of
I';,. Recall that the same structure appeared also in (18).

The inverse of Jy(x*) contains the smoothing CR
bounds C,, £/ =0,1,...,k —1, and the filtering CR
bound Cyy, on its main diagonal. Let the inverse Jj ;! (x*)
be decomposed as follows

C0|k

Jﬂkl(xk) = C/Ik

[0 | i |
i Tar | [0, ]

where only the diagonal blocks have been indicated.
Since only the lower-right block C, of [Jk],}]“ is of
interest, it will be extracted by

Co=[0 LIJw'1n[0 LI (59)

where I, is an n x n identity matrix and 0 denotes a zero
matrix of appropriate size.

To obtain [Js,'];s, the block-matrix inverse (A.2),
(A.3) will be applied to (56). Furthermore suppose that all
smoothing CR bounds C,; 1 x,C, 1 2, ---, Cx— 1, and the
filtering bound Cy; in the block [Jk_|k1]22 (see (58)) are
known. Then using (A.2) yields

[Jk_|k1:|11 = r/_|/1 + r/’_|/lsf,k [Jlﬁkljzzs},k rf_\fl- (60)

Before the prescribed extraction (59) is performed for (60),
the following intermediate computation should be
pointed out

[0 LIC,/[0 L1 =7 + K.y

(58)

SR AR AN v

=(Cy/ +Kjuh) (61)

where the inverse of I, in the form of (57) was realized
by (A.2), (A.3), and the final expression in (61) was ob-
tained utilizing the relation (23) for the filtering FIM.

Now it is possible to substitute (60) into (59). Using (61)
and substituting for S, from (56), the following relation
for the smoothing CR bound is obtained:

C = (C/_vl +K) "+ (Cf_lfl + K ) KT

XC/+1|kK?1}'/(C/7\/1 + Kf+1)71 (62)

for / =k —1,k—2,...,0. Note that C,; depends only
on the previous smoothing CR bound C, . |, and on the
filtering bound C,|,. Thus, the relation (62) explicitly
describes a backward recursive computation of the
smoothing CR bound C,, £ < k, while both predictive
and filtering bounds were described through their in-
verses. The inverse of the filtering CR bound C,, also
acts in (62) and it can be taken directly from the forward
recursions (27) and (28).

However, it might be useful to unify the relation for
the smoothing CR bound with the structures of
the predictive and filtering bounds. Thus, (62) will be
further modified using the matrix inverse (A.l); (see
Appendix A).

Obviously, the form of the left-hand side of (A.1) can be
found on the right-hand side of (62). Hence the inverse of
the smoothing CR bound, i.e. the smoothing FIM, obeys
this recursive relation

Cui =Col +Kivy — KT [KIE(C) + KDuy) !

x K41t + C ]l KT (63)
Finally, compare the bracketed inverted expression on
the right-hand side of (63) with (27). Employing the latter
relation, the final relation for the smoothing CR bound is
obtained
Cf_\kl = Cﬂ/l + Kl — K;jrtl

x(K/i1 + C/’_+11|k - C/_+11|/)71K?1%'/ (64)

for / =k — 1,k —2,...,0. The initial condition for this
backward recursion is given by the filtering FIM Ck_”}.

5.2. CR bound for smoothing with unknown parameters

The derivation of the smoothing CR bound for
a smoothing state estimate X/, 0 <!/ <k —1, in the
extended nonlinear system (29), (30) proceeds similarly as
in the previous subsection.

Firstly, consider the FIM Jk|k(x", a) from (42) in the
form analogous to (56),

r,, S/ k
Jo(xk, a) = —. 65
k(x5 a) {%Hk ¥, (65)

In (65), 'y, was introduced in (57),

_ ot 0 [G/—l:lT
Srk =[S [G1]1= & o | (66)

where K, =[K/{1* 0], and ¥,, is the lower-right
(n(k — ¢) + m)x (n(k — £) + m) block of J,;(x".a).

The smoothing CR bound for the pair (x,,a) given the
measurements up to time k can be decomposed as

C.X.X 7ca
Cz\k = |: ;lf Zak:|> (67)
ke lk

where, indeed, Cgj, = Cify = -+ = Cyji.
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The detailed derivation of recursive relations for the
remaining blocks of C, | is shown in Appendix C and the
final result is the following:

XX __ -1 -1 7,/ +1xx (+ 1,/
Cii=A, +A, (K71 G Kot

xa gax /+ 1./ /. + 1 gxa ax
+ A G KT+ Kk TGO kA

+ AXCH W ASDA (68)
k= — Affl(K;’iJlrlcfi 1k + A7CH ), (69)
Clie = Cl% 116 (70)

where/ =k —1,k—2,...,0.

6. Computation of Cramer-Rao bounds

The previous sections were focused on theoretical deri-
vations of CR bounds for all basic types of state estima-
tion. Now, practical possibilities of computation of the
CR bounds will be discussed for system (4) and (5), but
analogous results can be obtained also for system (29)
and (30) with unknown parameters.

Obviously, the expectations in (9)-(12) are crucial
for complexity of the CR bounds. Computational
complexity of these expectations depends on the struc-
ture of the system (4), (5) and on properties of the ran-
dom variables x,, w;, and v,. Hence, after a general
discussion two significant special cases of the system
will be analyzed separately: additive Gaussian noise in
state and measurement equations, and linear Gaussian
system.

6.1. General case

A necessary condition for calculation of the K and
L matrices in (9)-(13) is to find the transition pdf’s
p(X;+1/x,) and the measurement pdf’s p(z|x,) for
k=0,1,2,..., from system (4) and (5), and the derivatives
in (9)-(13). Of course, these relations cannot be used
without a further specification of the system structure
and the random variables.

As it is not generally possible to compute the expec-
tations in (9)-(13) analytically, a simulation Monte
Carlo method can be used for their estimation. With
the estimated matrices, the filtering, predictive, and
smoothing CR bounds can be generated by (28), (52),
and (64).

6.2. Additive Gaussian noise

An important special case of general system descrip-
tion (4) and (5) is assuming additive Gaussian state and
measurement noises as follows:

Xierq = fi(xe) +we, k=0,1,2,..., (71)
Z, = hk(xk) + Vi, k = 0: 1:27 ey (72)

where f,(x;) and h,(x;,) are known vector functions and
the state and measurement noises wy, v, have zero means
and positive definite covariance matrices Q, and Ry,
respectively, thus p(w,) = A (w,:0,Q,) and p(vy) =
N'(vi:0,R;). The initial state x, is described as
p(Xo) = N (Xo:mg, Mp).

Using the assumptions of the additive Gaussian noises,
the transition and measurement pdf’s can be expressed as
follows:

P(Xis 1 1Xi) = A (X4 £i(%4).Q0), (73)
p(z;|x;) = AN (z;:hy(x;),R;) (74)
and then the relations (9)-(12) can be rewritten as

Ki:1 = E{[V, fi(x)]"Q: 'V fi(xi)}, (75)
Kiii' = — E{[V, fi(x)]"} Qi 1, (76)
Kiii=Q', (77
Li = E{[Vy,hi(x)]"R; 'V, hi(x;)}. (78)
Since V,, Inp(xg) = — (Xxo — my)"™™yg ', it follows from

the definition (13) of K§ that K§ = Mg L.

By carrying out M simulation experiments for system
(71), (72) with k = 0,1, ..., N, one obtains M realizations
of the state trajectory {x;}r-o and corresponding
measurements {z; }5-o.

The CR bounds can be computed using the relation
(28) for filtering, (52) for prediction, and (64) for smooth-

ing with the matrices K¢, ;, KE¥T1 and Lf replaced by

their estimates; e.g. the estimate of Ki+7 ! is computed as

. 1 M _
KHT = M z [— Vx,,fk(xk)|xk:xk(j)]TQk 1,
j=1

where {x,(j)}=o is a jth realization of the state traject-
ory,j =1,2,..., M. The quality of Monte Carlo estimates
increases with M, but even a high number of simulation
experiments need not guarantee that the estimates are
satisfactory. Such situation is illustrated in Example 2,
Fig. 10.

6.3. Linear Gaussian case

On the contrary to the previous cases, the CR bounds
can be found analytically for linear Gaussian system
with f(x;) = Fix, in (71) and hi(x;) = Hyx, in (72)
where F, and H; are known nxn and rxn matrices,
respectively.

Note that in this special case, the matrices in (75)—(78)
become deterministic. Thus the recursive relations for all
types of CR bounds (28), (27), (52), and (64), which gener-
ate inverses of the CR bounds, could be rearranged
particularly using (A.1), and explicit relations for the CR
bounds can be obtained.

After the rearrangement, the relations for the filtering
CR bound are identical with the recursive equations for
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covariance matrices in the Kalman filter (Anderson
& Moore, 1979):

Cie = Ce—1 — Ck|k—1Hg
X (Hka|k— 1Hg + Rk)ilHkCldk—ls
Cevip = FkalkFE + Q.

The relation for the multi-step predictive CR bound C,y,
¢ >k, is given as

Ch = Ff—1C/—1|kF/T—1 +Q,—4 (81)

corresponding to the recursion for the covariance matrix
of the optimal linear predictor.

The recursive relation for the smoothing CR bound
C/jt, 0 </ < k, can be rearranged to the relation for the
conditional covariance matrix in the Rauch-Tung-
Striebel optimal linear smoother (Lewis, 1986):

C/lk = Cfv - Cf|/F/C/_+11|/
X (C/+1|/ - C/+1|k)C;+11|¢F/TC/\/-

(79)
(80)

(82)

7. Numerical examples

The goal of this section is to demonstrate computation
and behaviour of the CR bounds for filtering, prediction,
and smoothing both for the system (4) and (5) and for the
system with unknown parameters (29) and (30).

Example 1. The following discrete-time nonlinear
stochastic system is considered

T
Xoul + Wi, Zp = XqXok + Uk,

where x; = [X;x X24]". The covariances of the
zero-mean white Gaussian noises {w,}, {v} are
Q = diag{0.25,107°}, R = 0.01, respectively.
Simulations of the system were carried out for
the initial conditions p(x¢) = A (Xo:[10 — 0.85]",

X1 = [X16X2k

Sl _ s
\ L e ————
_ C

. — - - cik\‘i
. /___ Ckk?

diag{0.1,107*})for k = 0,1,...,N, N = 40 and M = 200.
The CR bounds were calculated for the following state
estimation problems: filtering, 1-step to 7-step prediction,
and 1-step to 3-step fixed-lag smoothing. Also, the fixed-
interval smoothing CR bound Cyy was computed.

The results are presented in Figs. 1-3. The two diag-
onal components of the matrices are displayed separate-
ly. In Figs. 1 and 2, the predictive CR bounds are
depicted apart from the others and the comparison of all
three types of CR bounds is shown in Fig. 3. Obviously,
the predictive bounds, which lie above the filtering CR
bound, exhibit a growth with increasing prediction step.
Naturally, the smoothing bounds are lower than the
corresponding filtering bounds since they are based on
both past and future information.

Example 2. The second example demonstrates the com-
putation of the CR bounds for a system with an unknown
parameter and shows using the CR bounds for quality
evaluation of nonlinear filters. The following stochastic
system from Chui, Chen, and Chui (1990) is considered

X111 = Fla)x, + wy, Zy = X1 + Ug,

where x;, = [x;; X,.]" and a is an unknown random
parameter of the matrix F(a) whose first row is [1 a] and
second row is [ — 0.1 1]. The initial state is given by the
Gaussian pdf p(xo) = A (X0: [20 207", 300 I,). Covarian-
ces of zero-mean white Gaussian the noises {w }, {v; } are
Q =0.11,, R = 0.01, respectively. The prior pdf of param-
eter a is Gaussian, p(a) = A(a:0.1,1073).

As the unknown parameter is not affected by a noise,
the filtering, predictive, and smoothing CR bounds must
be computed by (43)-(48), (53)—(55), and (68)—(70), respec-
tively. The K, L, and A matrices are given by definitions
(9)-(12), (33)-(39) but thanks to the assumption that
w, and v, are additive Gaussian noises, the simplifica-
tions described in Section 6.2 may be employed. The

computation of Ki, ;, Kii*% ! Kit}, L is straightforward

"

e 2} 5 W 15 o an 3 an a5

Fig. 1. Predictive CR bound (left graph) and filtering with smoothing CR bounds (right graph) for the first state component in Example 1.
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Fig. 2. Predictive CR bound (left graph) and filtering with smoothing CR bounds (right graph) for the second state component in

Example 1.

Fig. 3. Filtering CR bound (dot-and-dash line) lies above smoothing CR bounds (solid lines for fixed-lag and dashed line for fixed-interval smoothing)
and below predictive CR bounds (solid lines). Left graph: first state component; right graph: second state component in Example 1.

from (75)—(78) with V, f;(x;) = F(a) and V, h;(x;) = [1 0].
Note that all these K and L matrices can be enumerated
analytically. For this example, the relations (33)-(35)
can be expressed as K{i, = [10E{x,;} 10E{ax,;}],
K1t =[ — 10E{x,,;} 0], K¢y = 10E{x3;}. To enu-
merate these relations, the expectations E{x, ; }, E{ax, ;},
and E{x3 ,} must be numerically computed using Monte
Carlo simulations. Finally, L{" and L¢ equal to [0 0] and
0, respectively, because the measurement pdf does not
depend on the parameter a.

Simulations of the system were carried out for
k=0,1,...,N, N =100, with M Monte Carlo experi-
ments, yielding M realizations of state and measurement
trajectories {X;(j)}f=o0> {Z(j)}R=0, and M realizations of
the parameter a(j) with j = 1,2,..., M.

The time behaviour of the filtering, five-step predictive,
five-step smoothing, and fixed-interval smoothing CR
bounds, computed with M = 20,000, is depicted in
Figs. 4-6 for each diagonal element of the bound

o W 20 aa a0 sb &0 il Bl an b0

Fig. 4. Filtering CR bound Cjj; (dot-and-dash line), predictive CR
bound Cjj; - s (upper solid line), fixed-lag smoothing CR bound C{j}+ s
(lower solid line), and fixed-interval smoothing CR bound Cjy (dashed
line; coincides with Cj+s) for the first state component in Example 2.
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Fig. 5. Filtering CR bound C?} (dot-and-dash line), predictive
CR bound CFi_s (upper solid line), fixed-lag smoothing CR
bound CZi.s (lower solid line), and fixed-interval smoothing CR
bound CZ% (dashed line) for the second state component in
Example 2.

[=]
¥
2
2
g
€
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£
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Fig. 6. Filtering CR bound Cjf; (dot-and-dash line), predictive
CR bound Cifi-s (upper solid line), fixed-lag smoothing CR
bound Cifi;s (lower solid line), and fixed-interval smoothing CR
bound Cify (dashed line) for parameter a.

separately. The diagonal components of the CR bound
for the state are denoted as Cj;, C/j; and the CR bound
for the parameter is denoted as C7j. The filtering, predic-
tive, and fixed-lag smoothing CR bounds for state vari-
ables tend to nonzero values with k —» oo (see Figs. 4
and 5), while the bounds for the parameter a tend to zero
(see Fig. 6), because the parameter is not influenced by
any noise.

For the purpose of the combined state/parameter
estimation, the state of the system is extended as
& = [xF a,]%, where ay,; =a, with a9 =a. The
extended state &, will be estimated by three nonlinear
filters: extended Kalman filter (EKF) (Anderson &
Moore, 1979), modified extended Kalman filter (MEKF)

(Chui et al., 1990), and nine-term Gaussian-sum filter
(GSF) (Sorenson & Alspach, 1971; Simandl & Flidr,
1997).

The initial conditions for EKF and MEKF are given
by the Gaussian priors p(Xy), p(a). The nine-term GSF is
started from the following prior pdf:

9
p(éo |27 1) = Z a8)</1/(60:§8)5p(()l))3
i=1

where ol =1/9,
i=1,2,...,9, and

[&"... &1
1 1 1 20 20 20 39 39 39
=11 20 39 1 20 39 1 20 39
01 01 01 01 01 01 01 01 0.1

PY = diag{60,60,0.001} for all

to maintain the first two moments of p(x,). For a jth
realization of the measurement trajectory {z.(j)}r=o,
j=1,2,...,M, where M = 550,000, each of the filters
generates a trajectory of extended state estimates
{EMk(j)},f:O. These estimates are utilized for numerical
computation of the mean-square error matrix given by

(6)

M
o= Y T80~ GuUITTa0) — )T
j=1
for k =0,1,..., N, where {&(j)}f=o is the jth simulated
state trajectory.

Time behaviours of the filtering CR bound Cy, and of
the MSEM estimates Il for the three filters are
displayed in Figs. 7-9 for each component &,. As can be
seen in the figures, the GSF and the MEKF generate
estimates with much higher quality than those produced
by the standard EKF. The best results are obtained by
the GSF.

0.0135
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Fig. 7. Filtering CR bound Cjj} (dot-and-dash line) and mean-square
errors of the x; ; estimates for EKF (dotted line), MEKF (dashed line),
and GSF (solid line).
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Fig. 8. Filtering CR bound CZj; (dot-and-dash line) and mean-square
errors of the x, ; estimates for EKF (dotted line), MEKF (dashed line),
and GSF (solid line).

Fig. 9. Filtering CR bound Cjf; (dot-and-dash line) and mean-square
errors of the parameter estimates for EKF (dotted line), MEKF (dashed
line), and GSF (solid line).

For computation of the MSEMs, it was necessary to
set the number of simulations as M = 550,000, because
for M = 20,000, which was used for computation of the
CR bounds, the mean-square error ITjj;, of the GSF
estimate of x, ; is so inaccurate that it significantly falls
under the corresponding lower bound Cj;, as illustrated
in Fig. 10.

8. Conclusions

The Cramér-Rao bound for discrete-time nonlinear
stochastic systems represents a lower limit of cogniz-
ability of the system state. It can be used as a gauge
for performance evaluation of nonlinear estimators.
The paper presents a unified derivation of filtering,

T =

ol
ast
w4l
sal

0.2

RS

Fig. 10. Comparison of mean-square errors of GSF estimates of x ; for
M = 20,000 (dotted line) and M = 550,000 (solid line). The CR bound
Ciyk is depicted as dot-and-dash line.

predictive, and smoothing Cramér-Rao bounds for the
state in systems that may depend on unknown
parameters.

Utilization of the filtering Cramér-Rao bounds for
performance evaluation of nonlinear filters and compari-
son of the filtering, predictive, and smoothing bounds
were illustrated in numerical examples.
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Appendix A: Inverse of matrices

The inverse of the matrix expression A + BCD is given
by the following relation:

(A+BCD) '=A"'—A"'B
(DA 'B+C )" 'DA! (A.1)

provided that A~ ! and C~! exist.
The inverse of a 2 x 2 block matrix can be expressed
as

A D! ® —AT'DA!
[C B] :[—A‘1CA‘1 Al
®=A"+A'DAT'CAY,
A=B—CA'D

} (A.2)

(A.3)

provided that A~! exists.



37

M. Simandl et al. | Automatica 37 (2001) 17031716 1715

Appendix B: Derivation of recursive relations for filtering
CR bound with unknown parameters

The filtering CR bound C, for the pair (x,a) is found
as the lower-right (n + m) x (n + m) block of J;(x*,a) in
(42) and can be expressed by aid of the block-matrix
inverse (A.2) and (A.3) as

Col Jklk Ly + K¢ B Jk\k
HE T ek e Le A, G+t

k] "M [GF1171 (B.1)

Using the notations in (15) and (31), the following rela-
tions can be written:

ik = Lﬁ + K:’ﬁ - k|k[Jk\k:| 1Jk|k7 (B.2)
ik = — IRk I TG, (B.3)
ieo=Li + Ay — G ] 'IGH (B4)

k+1

The one-step predictive FIM Jj 1 jx(x
similar to (18),

,a) has the form

Jk|k Jiix 0 [G" ']
Jk|k J;fﬁc + Kiq | KRET! G;
(B.5)
0 Kor | K Ko
Gt Gy Zf?l Akq

and with notation (57) the predictive FIM for (x;.a) is

XX xa k+1 k+1,a
C_l Jk+1|k Jk+1|k Kk+1 Kk+1
k+1lk = | gak+1

aa >
G Sk Ki+ 1 Y. VA

_[0 mnﬁﬁ[ 0 [Gkﬂj -
¢toe MLk el [

Apply the matrix inverse (A.2) and (A.3) for [y, then
Tl = [ » (Z" . [ ™ I A’ } (B.7)
— A Jk|k|:Jk|k:| At
where (cf. (B.2))
Ay = Jl%\%c + Kisq — k|k[Jk|k] 1Jk|k
= Jif + Kii 1, (B.8)
@, = [Jii] "+ Wi A T i~ (B.9)
Thus, from (B.6) and (B.7) one gets
Tt = Kt — Ked 1" A KT, (B.10)
Jid e = =K+ KT kAkliHk[JHk] G177
— Kii 1A' GR, (B.11)

J& e = Ak — G o G+ GkAl:liI%ﬁc
X [Jklk] 1[Gk T+ GF l[Jk\k] lJk|k
x A G — G, AL GL. (B.12)

After some simplifications, using (B.2)-(B.4), (40) and (39),
relations (B.11) and (B.12) can be rewritten as

— Kif P A AR, (B.13)

+1,a
Jk+1|k_Kk

i = Jife + Ko 1 — ARAG ARG (B.14)
where Afi = Jif + K% 1 and A = [AGT"

Comparing (B.2)-(B.4) with (B.10), (B.13) and (B.14),
respectively, for time k + 1 it is evident that the rela-
tions differ only by L¥fl, L¥f1“ and L¢,, which re-
present a new information about the system state x;
and the parameter a that is contained in the observ-
ation z . Thus, filtering FIMs Jiji, Jifi, and Jgj, are

given as

o= + L, (B.15)
itk = k-1 + Lk, (B.16)
it = oy + L (B.17)

Appendix C: Derivation of recursive relations for
smoothing CR bound with unknown parameters

The inverse of Jy,(x",a) in (65) contains the smoothing
CR bounds Cjj;, for / =0,1,...,k — 1, and the filtering
CR bounds Cjj;, Ciji, on its main diagonal. Let the matrix
be decomposed as follows:

_ .
XX xa
0k 0|k
i i
Jlakl(xkaa):
XX xa
k|k k|k
ax ax ax aa
L0k - AL RS k|k klk |
(a0 | el | o
_ | wLELEE | ,
[TiiTas | [addas |

where all blocks except for the diagonal ones, the last
row, and the last column have been left empty. The
blocks that are of interest can be extracted similarly to
(59) as

Ci =00 L1100 LI, (C2)
=10 LIJw1:i200 LJ" (C3)
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Then using (A.2) and the notation from (65) yields

[Jﬂkl]u = 1—~/—|/1 + F;I/lgf,k [jﬂkl]zzgg,krﬂfl (C4)
and
[jl:Ikl]lz = - rﬁflgak[jﬂkl]zz- (C-S)

Note that the inverse of I';, has been already computed
in (B.7) and S, was introduced in (66). Hence using (B.3)
and (40), it holds that

[0 In]rﬂflg/,k

_ [ - J}?[J}JJ”A/}T[ 0 [GH]T]
A K, G’

— AR, AL'GE - JAING T
= AR, L+ K+ K — (L K — )]
= A KT 0 AL C6)

Now, (C.2) and (C.3) can be expressed using (C.4), (C.5),
and (C.6)

Ci =00 LITy' + /ST 150,00 L1
=A + ALK AT 0K AXTTALY
— AL ALK O KO

xagax (+1,/ {0+ 1 xa ax
+ ACH kKT F KT O kAL

+ AFCHADAL (C.7)
and
;lak = - [0 In]r/_l/lg(’,k[jk_lkl]Zz[O Im]T
CXX Cxll O
= —AKAT A [ o ”,,,}"‘}[ }
ok G L
= — ALK ICH e + ANCR). (C.8)
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Near-Field/Far-Field Azimuth and Elevation Angl
Estimation Using a Single Vector Hydrophone

Petr TichavskyMember, IEEE, Kainam Thomas Wong, Senior Member, IEEE, and Michael D. Zoltdwetkiv, IEEE

Abstract—This paper introduces a new underwater acoustic
eigenstructure ESPRIT-based algorithm that yields closed-form
direction-of-arrival (DOA) estimates using a single vector hy-
drophone. A vector hydrophone is composed of two or three
spatially co-located but orthogonally oriented velocity hy-
drophones plus another optional co-located pressure hydrophone.
This direction finding algorithm may (under most circumstances)
resolve up to four uncorrelated monochromatic sources impinging
from the near field or the far field, but it assumes that all signal
frequencies are distinct. It requires noa priori knowledge of the
signals’ frequencies, suffers no frequency-DOA ambiguity, and
pairs automatically the x-axis direction cosines with they-axis
direction cosines. It significantly outperforms an array of spatially
displaced pressure hydrophones of comparable array-manifold
size and computational load but may involve more complex
hardware. This work also derives new Cramér—Rao bounds
(CRBs) for various vector hydrophone constructions of arrival
angle estimates for the incident uncorrelated sinusoidal signals
corrupted by spatio-temporally correlated additive noise.

Index Terms—Acoustic interferometry, acoustic signal pro-

of the acoustic velocity vector field plus the overall presst
scalar field; both the azimuth angles and the elevation an
may be estimated and automatically matched with only ¢
vector hydrophone. Velocity hydrophone technology has b
used in underwater acoustics for some time [1] and curre!
attractsreinvigorated attention [18]. Diverse types of velocity |
drophones are commercially available and have been constrt
using a variety of technologies (see references cited in [10]).
The present scheme differs from most other direction find
methods in its recognition of the vector character of the i
pinging underwater acoustic wavefields and in how it uses
eigenvalues and the eigenvectors of the data covariance m:
Customary arrays of spatially displaced pressure hydrophc
typically encapsulate the arrival angle information in the spa
phase offsets among spatially displaced pressure hydrophc
In contrast, the arrival angle information here is embedded ¢
in the intrinsic directionality of each constituent component

cessing, acoustic velocity measurement, array signal processingthe vector hydrophone. Thus, the present method require:

blind estimation, direction-of-arrival estimation, phased arrays,
sonar arrays, sonar signal processing, underwater acoustic arrays.

|. INTRODUCTION

A

is herein proposed and analyzed for eigenstructure-ba

a priori information of the signals’ frequencies (but it is ne:
essary that no two sources have the same frequehegause
the array manifold is entirely independent of signal frequer
due to the spatial co-location of its constituent sensors. -
complicating effects of a near-field wave front’s curvature

new algorithm called thenivector hydrophone ESPRIT 50 avoided because of the spatial co-location of the unive
5?@‘Hrophone array's constituent sensors. The present algor

closed-form azimuth/elevation direction-of-arrival (DOA) estimay e adapted to handle frequency-hopped signals of unkn
mation for multiple sinusoidal sources incident from either thgoy sequences [24].

near-field or the far-field using a single vector hydrophone.

Underwater acoustic vector hydrophones have been use

A vector hydrophone consists of two or three orthogonally spain et al. [9] in linearly constrained minimum-varianct

oriented velocity hydrophones plus an optional pressure

I~(X’JCMV) beamforming toward predetermined direction

drophone, all co-located in space. Each velocity hydrophoB@churovet al. [12] have also deployed similar arrays
measures one Cartesian component of the impinging underwaifasure ambient noises but not for source localization. Neh

acoustic particle velocity vector field. A four-component vectofng paldi [10] first introduce the vector hydrophone meast
hydrophone would thus measure all three Cartesian compongitsht model to the signal processing research commur

Manuscript received May 1, 2000; revised August 21, 2001. P. Tichavsf(beV also propose a scalar performanpe measure [the n
was supported by the Grant Agency of the Czech Republic through Grasguare angular error (MSAE)] and derive an expression .

102/97/0466 and 102/01/0021. P. Tichavsky and K. T. Wong were supportgthound for the MSAE for the vector hydrophone. Hochw:
by Direct Grants 2050187 and 2050247 as well as Mainline Grant 44M5010

all three from Hong Kong's Research Grant Council. K. T. Wong and lvf.ihd Nehorai [15] investigate identifiability issues associa
Zoltowski were supported by U.S. National Science Foundation under Granith vector hydrophones. Hawkes and Nehorai [21] adapt
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hydrophone’s beam pattern is analyzed by Wong and Chi Tine first, second, and third component above corresponds t
[29]. Hawkes and Nehorai [28] investigate the performanaelocity hydrophone aligned along, respectively, the x-axis,
of vector hydrophones mounted on rigid-pressure surfacesyeaxis, and the z-axis. The last component corresponds to
pressure-releasing surfaces. pressure hydrophongy, may range betweet < v, < 7 (in-

The Uni-Vector-Hydrophone ESPRITalgorithm herein stead of) < ;. < 7/2) because the pressure hydrophone he
proposed represents the fisgenstructure (subspacejethod to distinguish between acoustic compressions and dilation.
that estimates the directions-of-arrival of multiple uncorrelatédimportant because acoustic particle motion sensors (such
monochromatic sources using only a single vector hydrophowelocity hydrophone), by themselves, suffer a L&ébiguity,
Eigenstructure-based (also called subspace-based) dingith their plane-wave response given by the “Fig. 8 ” curve.
tion-finding methods such &SPRIT[5], though sub-optimal,  There exist several essential observations about the ve
have supplanted optimal methods such as the maximum likexdrophone array manifold. First, one single vector hydropht
lihood (ML) method because eigenstructure methods requireeasurement yields a»41 steering vector. Thus, a singl
only the second-order statistics of the additive noise, requivector hydrophone effectively embodies a four-element ar
lighter computation loads but still offer comparable perforin and of itself. Second, this vector hydrophone array me
mance as the optimal methods at low-SNR and/or few-snapsfaitl contains no time-delay phase factor. That is, the vec
scenarios. The direction-finding approach of normalizingydrophone array manifold, unlike that of a spatially displac
the vector hydrophone steering vectors is first adapted aoray, is independent of the impinging signals’ frequent
the eigenstructure method by Wong and Zoltowski [19] tepectra. This frequency independence is due to the sp
multiple arbitrarily spaced vector-sensors at possibly unknown-location of the four component sensors that comprise
locations. Wong and Zoltowski [20] extend the intersensaector hydrophone. Third, the Frobenius norm of the first thi
spacing with a sparse regular array of vector hydrophonesmponents of any source’s steering vector always equal t
while avoiding ambiguity in the direction-cosine estimate$ourth component, regardless of source parameters; the
Wong and Zoltowski [23] also advanced a Root-MUSIC-basellree components cf; gives the three Cartesian directio
direction-finding algorithm applicable to vector hydrophonegosines. Thus, if the steering vectors of all impinging sour
Wong and Zoltowski [25] present still another direction-findingan be estimated from the received data, then the signal-o
algorithm allowing irregularly spaced vector hydrophonegrests’ DOAs can be estimated by normalizing each stee
that adaptively steers null beams in the underwater acoustactor to have norm equal tg2 and to have the last componel
particle velocity vector-field and that self-initiates a subsequetat equal to 1.
iterative search while requiring reopriori source information.

In the algorithm proposed herein, a matrix pencil pair is [ll. ESTIMATION OF AZIMUTH AND ELEVATION ANGLES
formed ou_t of two temporally-displace_d data sets coIIe_cteﬁ Uni-Vector-Hydrophone Data Model
from the single vector hydrophone. This proposed algorithm,
unlike most direction-finding applications of the popular eigen- Uni-Vector-Hydrophone ESPRforms atemporal invariance
structure-based parameter estimation algorithm ESPRIT, foriig two time-delayed data sets collected from one vector
only atemporalinvariance but ncspatial invariance (which drophone. That is, theth monochromatic signal impinging ol
involves two displaced but otherwise identical subarrays in tiae vector hydrophone produces two4V time-delayed (and

overall array geometry). possibly overlapping) data sets
aps(ty, fr), for n=1,... N
Il. M ATHEMATICAL MODEL OF THE FOUR-COMPONENT ars(ty + A, fr) = aps(ty, fk)ea'%fmw

VECTORHYDROPHONEMANIFOLD . . ) .
where the vector hydrophone steering veetpis defined as in

The present signal model involves multiple uncorrelated), and
monochromatic longitudinal underwater acoustic waves of
distinct frequencies, having traveled through a homogeneous s(tn,fk)de:f
isotropic medium and impinging upon a single four-component
vector hydrophone. Théth impinging underwater acousticWhere
wave front would have the following & 1 array manifold at %

bped @ hituten)  p =1 K (2)

kth source’s amplitude;
kth signal’s frequency;

the vector hydrophone [10]: k
yerop [0l o kth signal’s uniformly distributed random phase;
siniprcosdy w(r, x) Arp clonstant time delay between the two sets of time se
of | sintysingy o> Ore es.
a' qm?/)k,qmm = |PWe e | 1) ¥ (VAo s fi Ar
cosyy w(ty) Note that the invariance: doesnot depend on the
1 1 arrival angles but only on the signal frequency and the ti

delay Ar. Ay may be completely arbitrary and ot con-

2A direction-finding algorithm specifically for vector hydrophones ex-_, . K . . .
ploiting spatial invariances may be found in [20]; a direction-finding aIgorithrﬁ"tHCted by the Nyquist samplmg rate to be twice the h'9h

exploiting the invariances among various Cartesian components of tignal frequency as long as a set of distinct phase de
underwater acoustic velocity field may be found in [19]. An electromagnetF6y2wkaT’ E=1,..., K} are preserved. It is necessary th

version of the present algorithm has also been proposed by the present authors . o . .
[16] using three orthogonally oriented electric dipoles and three orthogonalfj — fil # 1/Ar. Section V will investigate the spectre

oriented magnetic loops, all co-located in space. separation needed for source resolution. The present algor
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requires no prior knowledge of the value Afr, although that Z, is formed containing data sampled{dt,...,ty—.}, and
information is typically available for alj # k. The above a second data subsE&t is formed containing data sampled i
sinusoid model of the uncorrelated incident signals diffeit,.1,...,tx}, whereL > 1is aninteger constant. Analogou
from that in [10], [19]-[25], and [27], which models the seto the case of applying ESPRIT to a uniformly spaced line
of all incident signals as a set of statistically independent aadray of identical sensors [7], the proposed algorithm’s perf
temporally uncorrelated zero-mean complex-Gaussian randorance may be best for sonie# 1.
sequences. Section V will derive and analyze the applicable
nonasymptotic and asymptotic Cramér—Rao bounds (CRE%) Adapting ESPRIT and TLS-ESPRIT to One Vector
for the uncorrelated sinusoidal model used here. Hydrophone

With a total of K impinging signald and additive complex-  |n this subsection, thESPRIT[5] and thetotal least squares
valued zero-mean, possibly spatio-temporally correlated, no{ge_S) ESPRIT7] parameter estimation algorithms are adapt

at each constituent sensor of the vector hydrophone to one vector hydrophone.
def [ A Let E, = [E¥,EL]* denote the 8xK signal-subspace
z(t,) = {Al} s(tn) + n(t,) eigenvector matrix for the matri€Z", whose K columns
B 2 are the principal eigenvectors @Z" associated with theé
_ aps(tn, fi) largest eigenvalues of the matrix. The partitionind@lfis such
- |:akej2”kaTs(tn, fr) +n(tn) ® that E; andE,, respectively, represent the top and bottorr

k=1 .
x K submatrices oE,.

where For analytical purposes, first consider the noiseless cas

def follows from the model in (3)—(7) that an alternative basis

Alde:f [as, o ] _ @ the signal subspace is that spanned by the columns of the
Ay E [ar /™A L ag el AT = A8 (5) trix [AT, AT]7. This implies the existence of a uniqiex K
[ s(tn, f1) n1(tn) nonsingular matrixC such that
st |1 |5 )|
n;, . ’ n;, . E, =A,T and E;, = AT =A,9T (8)
$(tn, [K ng(ty
:Cj(»zﬁflfT) s(fn) Introducing the notatio® = T~1$T
def .
= - . (6) E, ¥ = E,. ©)
GJZW.fK Aqg
) B . Becausep is a diagonal matrix, its diagonal elemefif®]. » =
The entire 8x IV set of collected data measurements is e febr = 1.... K} equal the eigenvalues @k. The
dof VA columns ofT' ! represent the corresponding right eigenvectc
Z=[z(t1)--z(tn)] = {ZJ ) In the noisy case, wheli; andE, are, respectively, replaces

by the estimate®; and E,, the equality in (9) becomes a

where Z, represents the 4x/N data set sampled atzpproximation. The least-square fit to (9) is determined by
{t1,...,tn}, and Z, represents the 4N data set sam-

pled at{t; + Az, ..., tx + Ag}. The present direction finding Uos = (BYE)TEYE,. (10)
problent is to determine{¢s,¢x, £ = 1,...,K} from i o
the 8 x N data set above without arg priori knowledge of 1he TLS fitto the (9) is given by [7]

&z, fiobroior k=1, K} s =—Vi12Vy) 11)
In practice, the observations ¥y andZ, may overlap. The ’

CRB performance analysis in Section V will assume a singlevthere theX x K matricesV; » andV » are implicitly defined

x N data seZ sampled at,, = (n — 1)/f,, » = 1,..., N, by the eigen-decomposition of

where f, is the sampling frequency. Fro, one data subset _ . "
L . .

3Subspace-based parameter estimation algorithms, such as ESPRIT, att{n]igﬁ [El Ez]

to separate the signal and the noise, respectively, into a signal subspace ahd & I ~rH

noise subspace. This leads to the requirement that the number of incident signals _ V171V1y2 L V1,1V2,1 (12)

must be less than the maximally achievable rank of the data covariance matrix, T V31 Vas VH VH

which in the present case equals 4 for the four-component vector hydrophone. ’ ’ L2722

The number of resolvable sources is further limited by the identifiability of the def . .

sources’ steering vectors [15]. It is found in [15] that only up to two arbitrariyvhereL Zdlanll, 5S lzK)A, Whgse diagonal elements are tt

oriented sources can always be uniquely identified, although in many situatiogfgenvalues OFEl EQ]H [El E2] ordered nonincreasingly.

the number of resolvable sources can be larger. Howevéy, i sufficiently . R ~ A
large (say,N = 100), the signal frequencies may first be estimated, and then, TAhe matricesk and'T are computed by eigen-decompositic

the sources may be separated from each other through a spectral comb filterOh& rr1.5.
spectrally separated data may then be processed by this processed algorithm. Because in the noiseless case the steering vectors obe
such case, an infinite number of uncorrelated sources with distinct frequencHSTation
may potentially be resolved &8 approaches infinity.

4Although the proposed algorithm is to be developed below for the batch —1 —1x—1
processing mode, real-time adaptive implementations of this present algorithm Ay =[ag, - ag] =E/T7 = E; T @
may be readily realized for nonstationary environments, using the fast recursive

1 -1 —1g-1
eigendecomposition updating methods such as that in [13]. :i{ElT +E,T°® } (13)
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they can, in general, be estimated as array manifold in (1) to become ax31 array manifold; the
maximum resolvable number of sources may decrease

A = [y, -, aK] = l{ﬁ;l'i‘*l + ]:]2’1‘*1&;*1}. (14) procedure similar to that in Section IV-B producgs If it is
2 the pressure hydrophone that is removed, (15)—(17) still he

The &~ factor in the above expression facilitatesherent PUt¥x Now may range only between< ¢ < /2 instead of

summation of the two sets of signal-subspace eigenvectdrss ¥» < 7 because acoustic compressions and dilation

(which differ by the phase factol§®];, s, k = 1,...,k}) "o longer be distinguished. ,
and is pivotal to the proposed algorithm’s performance. If the x-axis velocity hydrophone is removed, then (15) a

Froma,, the direction cosines may be estimated as foIIowém) become

~ ~ 2 ~ 2 ~
P i [alj]l2 __ (15) akdgf\/l 3 ([?k]l) B <[3A‘k]2) and o, [?k]l.
Via? + (a3 + [axl3 [ax]s [ax]s [ak]3(20)
. de ay,
i — 5 [ 5]22 — (16) Ifthe y-axis velocity hydrophone is removed, the correspond
V0ai + [a"‘b + a3 equations are
TN [af']f‘z — 17) ) —
VIaT + [ + [ad3 akdgf[ak]l and @kdgf\/l B ([akh) 3 ([ak]z)
From the above direction-cosine estimates,itiesignal’s ar- [ax]s [Ax]s (8]

rival angles may be estimated as If the z-axis velocity hydrophone is removed, then (15) and (.

R become

1bp = arcsin (1 [a2 + 77,%) = arccos(1y,) (18)

? A . Uk =12 Ve =157 -
dr =Lt + jr). (19) * T s " s

Azimuth-elevation direction finding has thus been performdgPr cases without either the x-axis or the y-axis velocity
withoutanya priori knowledge of the signal frequencies whiledrophone ¢y, ¢;) cannot be distinguished fromr (— ., 7 +

using just one solitary vector hydrophone and no planar arra ). To avoid problems with this ambiguity, eithgy, needs to
The azimuth angle estimates and the elevation angle estimatggestricted to [05) (instead of [0,2r)), or 1x needs to be con-

are automatically matched without any additional processingfined to [0,7/2) (instead of [0)) forall {k = 1,..., K}. The
The values of{f;, & = 1,...,K} need not be known omission of the vertical velocity hydrophone avoids direct me

a priori for univector hydrophone ESPRIT, which also insurementof the vertical component of the underwater acous

curs no frequency-DOA ambiguity, as would an array darticle motion, thereby allowing actual ocean acoustics to
spatially displaced pressure hydrophones. Such a spatidifter modeled as rectilinear. Moreover, ambient oceanic n
displaced array estimates the DOAs through the phase facti§#ids to be vertically directional, and therefore, the vertice
eI (fud/e)sintn cos di gnq ei2r(fud/e)sinvsindr (whered de- Oriented velocity hydrophone’s noise level may likely exce
notes the intersensor spacing, argymbolizes the propagation those at the other component hydrophones. An example of «
speed); thusf;, must be precisely knowa priori or otherwise & construction of the vector hydrophone is the cardioid [11].
estimated through extra computation in order to estimate the
DOAs unambiguously. In contrastJni-Vector-Hydrophone V. NEw CRAMER-RAO BOUND EXPRESSIONS FOR
ESPRITestimates the DOAs by performing a normalization on PERFORMANCEANALYSIS
each source’s frequency-independent steering-vector estimat¢ne CRB analysis in [10], [21], [22], and [27] models the s
and, thus, suffers no frequency-DOA ambiguity. of all incident signals as a set of statistically independent te
This present delay-sampling construction of a temporghrajly and uncorrelated zero-mean complex-Gaussian ran
invariance would not be useful with an array of spatialléaquences. That model is inapplicable to the present sch
displaced pressure hydrophones. Such a spatially disp'aﬂ?ﬂﬁire the set of incident signals are uncorrelated pure s
array’s steering vectors can still be estimated, but with nQiqs. Moreover, [10], [21], [22], and [27] assume the no
prior knowledge of each signals’ frequency, no closed-forgg pe spatio-temporally uncorrelated, which typically is not t
DOA-estimation solution for using such ambitrary array of  case in underwater acoustics [28]. This section derives anc
spatially displaced pressure hydrophones is yet known. Iteratiyg s the nonasymptotic and asymptotic CRBs for each of
search methods (such a8USIC) would become necessaryyector hydrophone constructions considered earlier in the p

. det [Ag]1 and & det [Ax]2 22)

resulting in much heavier computational costs. ence of spatio-temporally correlated or uncorrelated noise.
ternate theoretical performance bounds for a vector hydroph
IV. ALTERNATE CONSTRUCTIONS OF THE other than the CRB, are discussed in [26].
VECTORHYDROPHONE

The present method will also work if any one of the fouf\: For Noise of Arbitrary Spatio-Temporal Correlation

constituent hydrophones is taken out from the previously All noise sample§ni(t,), k=1,...,4,andn =1,... N}
defined vector hydrophone configuration, rendering thel4 are herein modeled as zero-mean, circular complex Gaus
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with known spatio-temporal covariance matiix drawing its where elements of the vectdf:(8)/d6 are
elements from the spatio-temporal covariance function

Ip(h)

c(k,l,n,m) = E[nj,(tn)ni(tm)]- (23) o =ay O Sk (29)
L . ou(8) Oay,
The subsequent exposition will first consider the general case of —01/) :bkw @ sk (30)
I having arbitrary spatio-temporal correlation, to be followed k k
- ) Au(h) day,
by two special cases df: L =b—— @ sy, (31)
. . i . . APy, APy,
1) noise that is first-order auto-regressively correlated in 9u(8
time but has a time-invariant spatial covariance matrix 1(6) =jbrag ® s (32)
Iy = diago?,07,07,07), whereo? ando?, respec- Ior
tively, are variances of errors of the velocity and pressure op6) =2nbras @ s (33)
hydrophones; A f
2) temporally white noise with time-invariant spatial covari-
ance matrixT. with
With the AR(1) parametelp| < 1
 det . N+1 N+1 N+
c(k,l,n,m) = Lol pl™ . (24) S =J -t 5 >,2—( 5 ),...,N——< 5 ) o
For temporally uncorrelated noise, = 0. For temporally

correlated noisep # 0; c(k,l,n,m) drops to 50% of its and ® represents the element-wise (Hadamard) product o

peak value at time lag equal leg(0.5)/ log(p) and to 10% at ator. Representing(#) in a block matrix form
log(0.1)/log(p). From (24)

Jl,l N Jl,K
r=rooM, (25) Joy=| : : (34)
where Jrp oo Ik
1 p pr .. PNt the (&, {)th block equals
o 1 p ... pN7?
M,=| o . (26)
! : . . kaybz ka,u"!z ka,¢z kaﬁh ka,fz
[)N71 [)N72 .. 1 Joeve o Tvede T Jpih
i = | Jouv o Jona oo Jos |- (39)
Note thatT' ! = I';? @ M, !, whereM, ! is a tridiagonal Jowdi Jowatn ot Jonor Jowifi
matrix Jro rwn Inse Jaoeo Jaon
1 1 —-r N 0 For arbitrary but size-compatible vectaish, e, andf and
) T matricesB andC, it holds that(a ® b)# (B @ C)(e ® f) =
M, =1z 02 - (27)  af'Be b Cf. Hence, using (25) and (28)—(33)
1+p* —p
0 —p 1 2 ~
Jop by :;af[‘o lazRe[sf{Mp s (36)
Define ¢ <[67 ..., 0%]", wherety by, v, ér. ox, fl”- g o2y rp198 oo
[Note thatyy, herein defined as thkth signal’'s phase in the bk —J_g 18x Lo an e[sy M, s/
middle of the given time intervall( V), differs from they;, of El=1... . K.
(2).] Letz = ved Z) be a vector consisting of all collected time ' ’ T
samples; thug; ~ N.(u(6),T), wherep(9) L K | ba, @ : (37)

sk, @ denotes the Kronecker product, and
The asymptotic behavior dJx;, k,1=1,..., K} will next

def def . . . .
sk =s(fr, or) = be studied, assumingy to be large and the signal frequencit
def |:()j[27rfk(1_%>+'¢k] ej[gﬁfk(z\r_%)ﬂk]]’f to bg fixed and distinct_. The off-di_ago_nal ele_ments of the

N B ' matrices, after appropriate normalization, will be shown

be asymptotically negligible. The asymptotic behaviors

the above-mentioned matrices are determined by the prod

" s M ts;, sff M s, andsy M 1s;.

J(6) = 2Re <3N(9)) r—laﬂ(g) (28) qu temporal!y_vyhite noise (i.ep,= 0 ande_ is an identity
a0 a0 matrix), the definition of{s;, & =1,..., K} gives the equa-

The Fisher information matrix equals [14]




44

TICHAVSKY et al.: NEAR-FIELD/FAR-FIELD AZIMUTH AND ELEVATION ANGLE ESTIMATION

tion at the bottom of the page, wheteg7lde:‘f7r(fl — fx). Asa
result, for largeN, k #£ [, andk,l =1,..., K

[0 0@ 01) O@) O(N)]
Jia = : : : (38)
o) o(1) O(N)
LO(N) O(N) O(N) O(N) O(N?) ]
Fork =1,...,K
rO(N) O(N) O(N) 0 0 7
O(N) O(N) O(N) 0 0
Jew=|ON) OWN) O(N) 0 0 . (39)
0 0 0 ON) o
L 0 0 0 0 O(N?) ]
Define the 55 normalizing matrix Dy =  diag

(N2 N1/2 N2 N2 N3/?) and the 5K x 5K nor-
malizing matrixDy = diag(Dy, ..., Dy). All elements in
the matrices{D'J,,D,',all k # ¢} are asymptotically
O(1/N), and hence, the matri0*J(9)D ' is asymptoti-
cally block diagonal. The diagonal @5'J(6)Dy' consists
of the elementsV — J,., .., N"*J;, 5 and the blocks

N_l J(bkv 1/)k7 ¢k>

1 ka;bk ka;¢k ka;¢k
= N kaybk ']¢A R J¢k7¢)k (40)
J¢A bk me Wk me Pk

for k = 1,..., K that have the orde®(1), whereas all other

elements have the ordél(1/N). This means, in other words,

that the parameterf,, ¢, and the tripletsi(, 1, ¢r) for k =

1,..., K are asymptotically decoupled. CRBs for these param
ters, which are defined as proper diagonal elements and diago

blocks ofJ, are approximately equal to the inversef ., ,

It for andI (b, i, P1.), respectively. The approximate CRB

expression forf;, is proportional taV—2, as is usual in the fre-

2503

The approximation in (41) is exact for the entire vector, ¢
cept for its first and the last elements; the first and the last ¢
ments on both sides differ by quantities of ordi1). Because
the vector has lengthV, the above approximation error is ¢
orderO(1) in the vector's norm. It follows that M 's; and
s M;lél, respectively, have the same asymptotic behavior
large N assi’s; andss; up to the constant multiplicative fac
tors c,(fr) = [1—2pcos(2mfr) + p?]/(1 — p?). Hence, for
p # 0 as compared withh = 0, elements of thé&th source’s
Fisher information matrix that correspond to angles of arri
are approximately,(fx) times as large and the correspondii
CRB approximatelyl /c,( fi) times as large.

The mean square angular estimation error (MSAE) [1
[26] represents an alternative estimation performance me
its lower bound may be related to the CRB as follows:

Bak 2

Bak
foc | crewo + | 53
=CRB(¢,) + sin” ¢, CRB(¢z.) .

2
MSAES Rt CRB(¢)

(42)

Here, CRB;,) and CRE¢;.) stand for the CRB for;, and¢y,
respectively, and they can be found as the second and the
diagonal elements df (b, ¥x, Px)] 7 -

The CRB of the Cartesian direction cosines may be !
rived using [14, Th. 3.4]: “Letg(¢) be a differentiable
function of 8 and have the Jacobia@(#), and (2), and let
J~1(6) be the CRB for estimating. Then, the CRB for
estimatingg(d) is CRB(g(#)) G(6)CRB(§)GT(9)
G(6)J~1(8)GT(#).” For the Cartesian direction cosine:
this means thatG(iy, o) [9ay, /Oy, Oay /Odr] and
RB(ay) = G({x, ¢x)CRB({x, ¢r) (G, $1))", where
RB(vx, ¢x) is a proper submatrix of CRB).

B. For Spatio-Temporally Uncorrelated Noise
Hereafter in Section V, the additive noise is assumed to

guency estimation, and CRB expressions for the other parargpatially and temporarily uncorrelated, all velocity hydrophor

ters (including the angles of arrival) is proportional¥o*.

to have equal noise variane€, and the pressure-hydrophor

It appears that asymptotic behavior of the CRB is very simil&® have noise variance?. Then,I' = Iy @ I, whereT'y =

in the case of temporarily colored noise, which is modeled
AR(1) with parametep. Forp # 0

diago?, 02,07, 02). The case of unequal noise variances at

velocity hydrophones has already been treated in the more
eral expressions in (36) and (37).

M s, zl +p° 5 — —F (927 Fe 4 =02 he) 5 Given the above form dFo, J(8) = J¥(6) + J?(8). JV(6)
4 2 _ 2 ; . 2 . . 4
1—p 1—p is proportional tal /o7 and represents the information provide
__1—2pcos(27 f) + 0? 41 by the constituent velocity hydrophon&g.(#) is proportional
~ 1—p2 Sk- (41) to 1/0;2) and represents the information provided by the press
skHsl _ cj(wfs%)‘;i:i(ri\ﬁ:t)’ for f; # fx
Nej(%a—%@k), for f; = f
il —o 7 cos(NA sin(NAyg ;) cos Ap
SL{Iél _ jCJ(w k) [% Si(nAk]:[J) _ % ( biu)\égw I\.l:| 7 for f; # fi
0, for fi = f
(o) —& 72 sin(NA 7 cos(NAg ;) cos Ay sin( N Ag 1+cos® A
Ha — ciler=er) [AT si(nAk‘j;l) +3 ( sinkzgk‘, B ( 21133(:“ ”)] . for fi # f
i NWNZ=1) i(pr—en) B
S e, for fy = fi
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2

hydrophone, if present. For example, the upper-left blocks of CRB(¢) = Loy +O(N"2) (52)
these two matrices contain the elements g 2Nb? sin” ¢y,
2 2
Jp 4 =—(a) ajRe[s!!s)] (43) CRB(¢x) =22 + O(N?) (53)
lops 2Nby,
2 2
JP == Re[sf ki=1,... K 44 __ 3o 1
bon =52 [si's] A=1,..., (44) CRB(fu) =5 gz + OV ™) (54)
Wh_ereagc contains the elem_ents af. corresponding to the ve- Noting that
locity hydrophones present in the vector hydrophone. If all three
velocity hydrophones are present, th&nconsists of the first , - o; 1 0
three elements of. CRB(Yr, #1) ~ 2ND2 | 0 st (55)

For largeN, J¥(#) andJ? () exhibit the same asymptotic be- . o .
havior asJ(6). For the case where the vector hydrophone coH]e asymptotic CRBs for the Cartesian directional cosines el
6), shown at the bottom of the page. The asymptotic loy

tains all three velocity hydrophones with equal error variances, d for th | b
the three vectoray, day /9y, andday, /d¢,. are pairwise or- ound for the mean square anguiar error becomes
thogonal. HenceJ . andJ (b, 1x, ¢ ) are diagonal matrices. o2

MSAES ® = CRB(t)y) + sin® ¢, CRB(¢y) = R
k

(57)
C. CRB for One Vector Hydrophone Consisting of Only Three
Velocity Hydrophones

The diagonal elements of the nonasymptotic information mg: CRB for One Vector Hydrophone Consisting of Three
trix J(6) = J*(#) become Velocity Hydrophones Plus a Pressure Hydrophone
The Fisher information matrixd,(6) for the pressure hy-

v 2 2N . .
Jp b, :—(aZ)TaﬁcRe[skHSk] = (45) drophone data has the (nonasymptotic) diagonal elements

o2 2
2 2N
2, (Oan\" (O " JE, ==Re[sis)] = = 58
Thwon =53 0% (@) D0r Rel[sy'sk] = btk =2 [s1s] o2 (58)
P —_JP —
_2NB (46) T in =Jauon =0 (59)
o2 2, u 2Nb?
’ T Pr Pk :Tkae [Sk‘ Sk] = 2 (60)
Jv _ 2 bQ 6ak 8ak R H _ Tp Ty
evtn = 520k \ B I elsi'si] = 87 g g 202N(N?—1)b7
2 J5 5 =5 UkRe[sy'si] = 3 (61)
72]\71)% sin” 1y, a7 ’ g5 302
o3 In the single-source case (i.d(, = 1), the estimated param

v 2 e T H _ 2sz eters are decoupled, and measurements from the pressur
Toren _cr_,fbk(ak) aRefs;si] = o2 (48) drophone bring no useful information on the arrival angle.
v 872 5 T, H- the case of multiple sources (i.€€;, > 1) and a largeV, the
Thte :J_%bk(ak) apRe[sy'si| = preceding statement becomes approximately true. Again,

222 N(N? — 1) asymptotic CRBs_obk, Ve, qbk,_gok,_ and f; are the inverses
=" (49) of the corresponding asymptotic diagonal element3(éf) =

2
303

Jv(0) + Jr(0)
As previously shown, the asymptotic CRBs of the signal param-

2 2
eters (for !argeN and well-separated frequencigs| fi, — /1| > CRB(by) = 0,; P —+ O(N~2) (62)
1/N) are inversely related to the above elements. That is 2N(o2 4 02)
2
o - CRB(1)1,) ==Y + O(N 2 63
CRB() = + O(N™2) (50) (V) =g +OW) (63)
o2 o
CRB(¢x) == + O(N 2 51 CRB(¢1) =———5 25— + O(N~? 64
(1) ZNI)i +O( ) (51) €y 2Nbi sin2 n ( ) (64)
2
CRB(ux, vi) =G(vx, o) CRB(Yk, o1 )G (i, i) ~ 2]\;1;2
k
cos? by, cos? g +sin® ¢, — sin’ ¢y, cos ¢y sin Py,
—sin? 1y cos ppsingy  cos? Py sin? ¢y, + cos? Py,
03 1- ui —URVE
ToNB? Lukvk 1— v} } (56)
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oo, the -hydrophone is ab ici ;
_ vop 2 pressure-hydrophone is absent. The asymptotic informe
CRB(¢r) T 2Nbi(o? + 02) +O(NT) (65) matrix corresponding to the pressure-hydrophone equals
30202 2N
CRB(fi) ==—5amro—>5 +O(N™*). (66 J?(by, Yr, 1) = —5-diag(1,0,0).
(fk) 27T2N3b£(0'.3 —|—(r[2)) + ( ) ( ) (’kal/)kaqbk) U]% EX tAg) )

Note that the asymptotic CRBs f@r, and ¢, do not depend
on o, the pressure-hydrophone data do not improve thﬁHenlge, we ha_ve (6;& s{hown atthe bottorg o;the pagil\
estimation oft, and ¢, obtained from the three velocitytc??tg vac(ww = [CRBu(br, ¥x, #x)]2,2) and CRB(¢r) =
hydrophones’ data. Moreover, as, approaches infinity, the [ X “f_( ’“’1/)’?"7)’“)](3’3)'. ) .
asymptotic CRBs oftx, ¢x, and fi converge to those for Similarly, if the y-axis velocity hydrophone is absent,_v
the three-velocity hydrophone vector hydrophone. Hence, tﬂ)gve (70), shown at the bottom of the page. As the y-axis

. . ; ity hydrophone, instead of theaxis velocity hydrophone is
asymptotic CRBuy, vy,) and the asymptotic MSAE? remain 'O : .
the same when the pressure hydrophone is absent. now absent, the asymptotic CR@x, ¢« 1) may be obtained

from the asymptotic CRB(bx., v, ¢x) by simply interchanging
E. Asymptotic CRB for One Vector Hydrophone Consisting 6int” %« @ndcos® 9. Moreover, CRB (1x) = CRB, (v1).
Two Velocity Hydrophones Plus a Pressure Hydrophone If the z-axis velocity hydrophone is absent

In contrast to earlier cases where all three velocity hy- 2

— P
drophones are present, the information from the press&ng(bk’q/’k’d)k) T2Nb2

hydrophone now becomes necessary for the asymptotic (as b2 by tan 0

N approaches infinity) estimation of the arrival angles. The Gin?

estimates of/;. and¢;. are still asymptotically decoupled from | —br tan W : 3 0

the estimates ap;, and f; but not necessarily from the estimate oSt .2

of the signal amplitudé;.. 0 0 _ 02_5
The asymptotic Fisher information matrix of the triad s W(?l)

(bx, ¥, 1) corresponding to the velocity hydrophones has the
general form in (67), shown at the bottom of the page, whereThe asymptotic lower bounds for the MSAEs of these th
a;, is composed of those elementsznf that are present in the constructions equal, respectively
vector hydrophone construction.

If the x-axis velocity hydrophone is absent, we have (68), ~MSAES ™ =CRB,(¢3) + sin $1CRB. (¢%)

shown at the bottom of the page. Becaili$éy, ¥x, ¢x) is hon- o2 o2 Z_j +1
invertible, the asymptotic CRBs (and, consequently, the vari- :ﬁ — -1+ 2’”72 (72)
ance) of unbiased estimators are infinite if the information from 2N \ 7 sin” ¢y cos® o
alTal, brafl (oo bragl (5o
8“;

.
3 (b s ) :i—f b (2) a0z () (
(

N\NT N\NT
day, day,
b (G5) a0 (55)
" 2NH2
I (w; bws P) = ng

v

2
) () (%) i
( a

by, 2 (sin? oy sin® ¢y, 4 cos? 9Py)  —by tsinhy cos iy cos? ¢y byt sin® oy sin ¢y cos ¢y,

—b,;ll Sigq/)k cos Py, cos? ¢y, cos? oy sin? ¢y, +sin® 90y, sinapy cos Py, sin ¢y, cos dr. | (68)
b~ sin” 1y sin ¢y, cos gy, sin 1y cos Py, sin ¢y cos Py, sin 1y cos? ¢y
v -1
_ 2 tan ¢y
bk bk cot 1/)k —bk sinZ oy,
2 -2 )
gg cos® i+ 7% (Z5+1) cos iy tan ¢k
— [ J— P
- IND2 bk cot wk sin? iy sin® (69)
k 2 o2 . 2
(—;-i—l) cos P tan ¢y —§+51n2 b ——5 cos? Wy cos? 7%
—b tan ¢y p “p hid
L k Sin? Py sin® by, sin? 1, cos? ¢y,
r 2 cot ¢
bk bk cot ’l/)k bk sinZ ¥y
o2 o2 .
‘72 cos? Yrt % (a—‘2’+l) cos Yy, cot ¢y
— 7 »
CRBy(bkv 1/)7&'7 ¢k) - 2Nb2 bk cot T/)k sin? iy, sin® iy, (70)
% 2 2 2
(0—54—1) Cos 1, cot ¢ 0—5+c052 cbkf% cos? Wy sin® 3%
b cot ¢y 7p p “p
L Yk 5in? Wy sin® 1y sin? 4y, sin? ¢y,
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Fig. 1. Asymptotic CRBy») with all three velocity hydrophones with or Fig. 4. Asymptotic CRB) without the z-axis velocity hydrophone but witt
without a pressure hydrophone. a pressure hydrophone.
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Fig. 2. Asymptotic CRBy) without the x-axis velocity hydrophone but with Fig. 5. Asymptotic CRB¢) with all three velocity hydrophones with or
a pressure hydrophone. without a pressure hydrophone.

o SRR \\\\\\\’o RN
k- y SN e,
L R
"3 T o i
E‘ﬂ 3 e = 4'.-“'
. = =i N, .
o HR;,‘-‘%-\ S e 4..5‘»‘.;'_:‘!‘3‘:;&!‘, g . -.. 4’-4-4-" -
P = S
- 100 R, 10“
‘":Dﬁ—,_ﬁ\h’__‘d__.a-_-:m L2 S RLC

w, cmgrems

Fig. 3. Asymptotic CRB) without the y-axis velocity hydrophone but with Fig. 6. Asymptotic CRB¢) without the x-axis velocity hydrophone but witt

a pressure hydrophone. a pressure hydrophone.
CR _ .2 1) ¢ does not affect the asymptotic CRB,) for any
MSAE, ™ =CRB, () + sin wkCR?y(¢k) vector hydrophone construction, &g %%(gs not af-
o2 o2 Zr+1 fect the fraction of signal energy distributed on the x
:2Nbb2 O_—; -1+ m (73) plane or parallel to the vertical axis.
AN Tk K 2) ¢ does not affect the asymptotic CRB,) for those
MSAESR =CRB.(¢1) + sin® ¢,CRB. (¢z) vector hydrophone constructions with both an x-a
o2 and a y-axis velocity hydrophone, for the same reas
_"_5 "_3 _ 7 +1 (74) given above. However, when one of the two ho
2NV a2 cosZihy | zontal velocity hydrophones is absent, the asymptc
CRB(¢3) increases significantly wher, becomes
Figs. 1-4 plot, in decibels of radians, the asymptotic C&B, aligned along the Cartesian coordinate axis withc
respectively, for all five aforementioned vector hydrophone a velocity hydrophone. In such a case, the horizor
constructions, and Figs. 5-8 plot the corresponding asymptotic component of the incident signal’s energy becor
CRB(¢1). Note that the horizontal axes in Fig. 4 are oriented unobservable by the vector hydrophone. Hence,
differently from the other seven figures. The additive noise is estimation of the azimuth angle becomes impossit
spatio-temporally uncorrelated. as indicated by the very large asymptotic GRB)
The following qualitative trends may be observed from these value for such cases in Figs. 6 and 7. Note that Fi¢

eight figures. is identical with Fig. 7 wherp,, is shifted by 90.
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Fig. 7. Asymptotic CRB¢) without the y-axis velocity hydrophone but with

a pressure hydrophone. W T oR o es oz {ér %z o3 08 08 '
i Fig. 9. RMS nonasymptotic CRB for the direction cosines versus
r,.,\,\ ot separation in the incident sources’ digital frequencies: two closely spe
"‘q ; 4, \ Sy sources With{ 21, v2} = {75°,80°}, {é1, ¢2} = {35°,30°}, by = bz = 1,
@ 2o N 1 S o N, Ap = 01 and 100 snapshots with uniform sampling frequency at 10 in e
éw - Q & \\\\\\\\\:}3}\\%‘\,\:\\'}\\\}:‘»{\‘\‘\:\‘ :\ of 200 independent experiments.
o] e
4 % s
= gn. o -..,“‘\..,: e - .
L “ﬁ:ﬁwgmﬂ = Figs. 1-8 together suggest that the three-velocity hydroph
E S

construction gives the best asymptotic CRBs and requires
least number of constituent hydrophones. However, when ¢
the azimuth angle needs to be estimated, a comparable as
totic CRB(1x,) may be obtained using the vector hydropho
Fig. 8. Asymptotic CRB¢) without the z-axis velocity hydrophone but with construction with the two hgrlzontal velocity hydrophones pl
a pressure hydrophone. a pressure-hydrophone, with the advantage that the meas
data will better conform to a rectilinear model for the oceal
3) The asymptotic CR@¥;) increases as;, decreases dynamics. On the other hand, only the four hydrophone vet
for all five vector hydrophone constructions. This idlydrophones can handle up to four incident sources using
because a smallef, implies a small fraction of signal Proposed algorithm.
energy lies on the x-y plane, thereby decreasing theFig. 9 shows the CRBs dependence on the incident sour
signal-to-noise ratio on the horizontal plane. frequency separation in a two-source scenario at various St
The asymptotic CRB)) is independent ofy;, when TheasymptoticCRB cannot be used here because the signal
all three velocity hydrophones are present, with diuencies are not well separated. Instead, the CRB is comp
without the pressure hydrophone. This is because thg inverting the exact information matrix in (28). Moreover, b
elevation angle information is encapsulated in th@ause this computation depends on the signals’ initial phe
received data in two complementary ways: [which appear insi’s; in (37)], the data in Fig. 9 are average
a) the signal’s energy along the vertical axis: from 200 independent trials, with the initial phases uniforrr

b) the signal’s energy along the x-y plane to be suplistributed in(0, 2]. The CRB for the four direction-cosine es
tracted from the signal’s overall energy as me imates are combined in the root-mean-square (RMS) CRE

sured by the pressure hydrophone or by all thrdaking the square root of the sum of the squares of the four
velocity hydrophones. dividual CRBs. The additive noise is spatio-temporally unc

The asymptotic CRB/;) increases ag;, decreases related.
when either of the two horizontal velocity hydrophone
is absent. In such cases, the elevation angle inform
tionis encapsulated only as in (a) through the nonlinear Fig. 10 plots the root-mean-square (RMS) standard
trigonometric functiorcos v, which has a flat slope viations, and Fig. 11 plots the RMS biases wfivector
with respect ta);, whent;, approaches zero. hydrophone ESPRITslirection-cosine estimates of Mont
The asymptotic CRB/;) increases ag, increases Carlo simulations in a scenario involving three uncorrelat
toward 90 when the vertical velocity hydrophone ismonochromatic sources impinging on a single four-compon
absent. In such a case, the elevation angle informector hydrophone. A source’s root-mean-square estima
tion is encapsulated only as in (b) through the funcstandard deviation is the square root of the mean of squar
tion 1 — sin? 4y, sin? ¢y, — sin” 9y, sin? ¢y, which must the estimation standard deviations for that source’s x-axis
lie between 0 and 1. Ag;, increases toward 90the y-axis direction cosines. A source’s RMS estimation bias
sin? in 1 — sin® ¢y sin? ¢p — sin® ¢y sin® ¢, has similarly defined. The incident source’s parameters are gi
flatter slopes. This means that— sin? ¢ sin® ¢, — in Fig. 9's caption. Their direction-cosines equal = 0.47,
sin? 1y, sin? ¢, becomes less accurately estimated as = 0.67, us = 0.87, v; = 0.88, v, = 0.68, andvs = 0.48.
1, increases toward 90 The additive noise is spatio-temporally uncorrelated and

w. dogroos

4

~

5

~

/I. MONTE CARLO SIMULATIONS OF PROPOSEDALGORITHM

6

~



49

2508 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 200

8L mmIng. =B Bource. ol Liney-—-CEy

FHE; Rarebaa] Dot B (ezan-Cosre Exl

)

s S ) (3 L o
SNAL I8 OB Teras Humaer af Fragaurn Hydrephcnms o L—Shaped Arey

Fig. 10. Univector hydrophone ESPRITRMS estimation standard Fig.12. Univector hydrophone ESPRVErsusESPRITon an half-wavelength
deviations {i, o, & = 1,2.3} at various SNRs. Three uncorrelatedspaced L-shaped array of pressure-hydrophones. Two incident sources
monochromatic sourceq v, vz, ¥} =  {86.1°,72.7°,83.5°} , 4 = 0.2,u, = 0.1,u; = 0.1,v, = 0.2 , baseband digital frequencie:
{01, 62,62} = {61.9°,45.4°,28.9°}, andb, = b, = bs = 1, baseband #, = 0.60, f, = 0.95,SNR = 20dB. SNR is relative to unity signal power
digital frequencies{fi, f, fs} = {.55,.95,.15} impinge on a vector A, = (.1.One hundred snapshots with uniform sampling frequency at 1(
hydrophone, SNR is relative to unity signal power, ahg = 0.1. Eighty  each of 500 independent experiments.

snapshots with uniform sampling frequency of 10 in each of 500 independent

experiments.
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= - sR i an @@ @ o Fig. 13. CRB and proposed algorithm’s MSAEs with one to four statistice
independent sinusoidal sources in spatio-temporally uncorrelated noise, pl

Fig. 11. Univector hydrophone ESPRITs RMS estimation bias ctgainstV.
{@, 0x, k=1,2,3.} atvarious SNRs. Same settings same as in Fig. 10.

priori; the pressure hydrophone scheme thus enjoys an ad

complex Gaussian; the SNR is defined relative to each sourt&ge on this point over the proposed schénTée vertical axis
With the smallest difference among thgs and among the,s in Fig. 12 plots the root-mean-square error (RMSE) of e¢
being 0.20, the proposed algorithm successfully resolves @flthe direction finding approaches. The RMSE is defined
three sources with high probability at SNRs above 0 dB. Thle square root of the sum of the estimation variance and
nonasymptotic RMS CRB is also plotted in Fig. 10. Becausgjuare of the estimation bias. To match the proposed schel
the nonasymptotic CRB depends on the sources’ tempog&formance, the spatially displaced pressure-hydroph
phases ¢, k = 1,2,3}, the CRBs plotted in Fig. 10 are thearray needs five elements. Fig. 12 also clearly shows that
average of 500 Monte Carlo runs, each with its statisticalgpatially displaced pressure hydrophone array fails to res
independen{ys, k= 1,2,3}. Note that the estimation biaseghese two sources if limited to the same number of hydroph
are more than an order of magnitude less than the standal@ments (i.e., three) as in the proposed scheme.
deviations, thus supporting earlier claims that this algorithm Fig. 13 plots the one-source, two-source, three-source,
yields asymptotically unbiased estimates. four-source MSAEs and the CRB versié. The Cartesian
Fig. 12 compares the performanceuwfivector hydrophone direction cosines of the four equal-power sources (wk
ESPRIT(using a three-velocity hydrophone vector hydrophon@)l present) are{0.87,0.32,0.67,0.5} along the x-axis and
with that of ESPRITusing an L-shaped half-wavelength spaced0.48,0.81,0.68,0.5} along the y-axis, with correspondini
array of variable number of pressure-hydrophones, half @igital frequencies at{0.15,0.35,0.68,0.95}. The additive
which lie along the x-axis, and the other half along the y-axigoise is spatio-temporary uncorrelated with 20 dB SN
The signal scenario involves two uncorrelated monochromatfie raw data, which is regularly time sampled at the vec
sources with spatio-temporally uncorrelated complex-Gaussiaydrophone, are segmented into two temporally overlapy
additive noise, as specified in the figure’s caption. The two sggbsets, with\; equal to ten sampling periods fof > 10 but
of Cartesian direction cosines are matched uaipgori source 6This comparison between a vector hydrophone and a pressure hydrop

information. That information is, of course, not availalae array needs to be understood by recognizing that a velocity hydrophone

volves substantially more complex hardware than even a pair of pressure

drophones. The robust and accurate suspension of a velocity hydrophon

5The half-wavelength spacing is with respect to the transmission frequencgssitates an intricate mechanical support mechanism. Co-locating two or

which is herein assumed to greatly exceed any difference in baseband digitéhogonally oriented velocity hydrophones presents a very challenging h
frequencies between the incident sources. ware design problem.
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Fig. 14. Proposed algorithm’s MSAE with one sinusoidal source in AR(Hig. 17. Proposed algorithm’s MSAE with four statistically independe
temporarily correlated additive noise plotted agajnandN. sinusoidal sources in AR(1) temporarily correlated additive noise plot
againstp and N.
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Fig. 15. Proposed algorithm’s MSAE with two statistically independent
sinusoidal sources in AR(1) temporarily correlated additive noise plotted Fig. 18. CRB corresponding to the MSAE's in Figs. 14-17.
againstp and N.

algorithm (see Figs. 14-17) very closely approximates
CRB (see Fig. 18) in the single-source case forpadind N.
For multiple sources, the proposed algorithm is still very clc
to the CRB if the noise is only moderately colored witinear
zero (cf. Fig. 13). The difference between the actual MS,
and the CRB is more apparent for highly correlated noise,
negativep,” and for cases with more sources.
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Quasi-Fluid-Mechanics-Based Quasi-Bayesian
Cramér—Rao Bounds for Deformed Towed-Array
Direction Finding

Petr Tichavsky, Member, IEEE, and Kainam Thomas Wong, Senior Member, IEEE

Abstract—New quasi-Bayesian (hybrid) Cramér-Rao bound
(CRB) expressions are herein derived for far-field deep-sea
direction-of-arrival (DOA) estimation with a nominally linear
towed-array that 1) is deformed by spatio-temporally correlated
oceanic currents, which have been previously overlooked in the
towed-array shape-deformation statistical analysis literature,
2) is deformed by temporally correlated motion of the towing
vessel, which is modeled only as temporally uncorrelated in
prior literature, and 3) suffers gain-uncertainties and phase-un-
certainties in its constituent hydrophones. This paper attempts
to bridge an existing literature gap in deformed towed-array
DOA-estimation performance analysis, by simultaneously a)
incorporating several essential fluid-mechanics considerations to
produce a shape-deformation statistical model physically more
realistic than those previously used for DOA performance analysis
and b) rigorously derive a mathematical analysis to characterize
quantitatively and qualitatively the DOA stimation’s statistical
performance. The derived CRB expressions are parameterized in
terms of the towed-array’s physically measurable nonidealities for
the single-source case. The new hybrid-CRB expressions herein
derived are numerically more stable than those in the current
literature.

Index Terms—Acoustical signal processing, array signal
processing, direction-of-arrival estimation, marine telemetry,
parameter estimation, sonar arrays, sonar signal processing,
underwater acoustic arrays.

I. INTRODUCTION

towed-array consists of an acoustically transparent and
A neutrally buoyant cable of hydrophones hauled behind a
surface ship or a submerged vessel. A towed array may extend
for several tens of meters to several hundreds of meters. The
towed array’s nominally linear geometry may be arbitrarily
distorted by the towing vessel’s varying speed and transverse
motion, by the array’s non-neutral buoyance and nonuniform
changes in density, and by hydrodynamic effects plus oceanic
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swells and currents. The resulting snake-like deformation from
the array’s nominal linearity can lead to critical degradation in
the accuracy of arrival angle estimation/tracking, beamforming,
and imaging because all these signal processing operations are
predicated on a sufficiently accurate (a priori or estimated)
model of the array’s inter-hydrophone spacings.

Towed-array deformity has been investigated by researchers
from several complementary perspectives: Towed arrays’ geo-
metric deformation has been empirically measured [13], [24],
[35], computer simulated [39], and theoretically predicted based
on fluid mechanics and oceanic physics [1]-[3], [7], [8], [11],
[12]. A wealth of array-shape calibration algorithms have been
devised using cooperative sources from known arrival-angles (in
“aided calibration”) [23], [34], [38], by exploiting noncoopera-
tive sources from unknown arrival angles (in “self-calibration”)
[9], [10], [14], [18], [22], [25], [29], [36], or by attaching on the
towed-array nonacoustic positioning-devices (such as heading-
sensors, depth-sensors and compasses to estimate the array’s
displacements along the array-length axis, the vertical trans-
verse axis and the horizontal transverse axis, respectively) [8],
[16], [21], [24], [27]. The present work provides a quantitative
analysis of bearing-estimation accuracy for deformed towed-ar-
rays, assuming array shape-deformation information is avail-
able from neither cooperative calibration sources nor from nona-
coustic positioning devices.

A. Literature on Modeling Towed-Array Shape-Deformation

The towed-array shape-deformation modeling literature
generally falls into two categories: 1) fluid-mechanics-inten-
sive models that are physically accurate but mathematically
intractable for statistical signal parameter-estimation perfor-
mance analysis and (2) mathematically simple models that
overlooks most (if not all) fluid-mechanics-based considera-
tions. The present manuscript aims to make one initial step
toward bridging this crucial literature gap between 1) and 2)
above by incorporating certain (admittedly, not all) essential
fluid-mechanics considerations into the statistical measurement
model, while drawing out in detail with rigorous mathematics
a comprehensive (admittedly, not exhaustive) analysis of what
this enhanced model implies in the statistical performance of
direction-of-arrival (DOA) estimation.

1) Fluid-Mechanics-Intensive Models: Transverse defor-
mation/vibration of a thin flexible cylinder, towed by a vessel,
has been shown to obey a fourth-order partial differential
equation known as the Paidoussis equation [1]-[3], [11], [12].
This equation, which was first applied in the towed-array

1053-587X/04$20.00 © 2004 IEEE
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context in [7] and [8], describes the mechanical propagation of
array-deformation down the array’s length. The validity of this
theoretical model was verified under field conditions [2].

Fluid-mechanics-based array deformation models have been
used to investigate only array shape calibration in [21], [24],
[36], and [38] but not for the present objective of DOA-es-
timation Cramér-Rao bound (CRB) analysis. Moreover, these
models from [21], [24], [36], and [38] overlook the oceanic cur-
rents’ statistical influence in the Paidoussis equation on array
shape deformation. These earlier works also model the towing
vessel’s movement as temporally uncorrelated, which may be
physically unrealistic for high time-sampling rates. In contrast,
the present analysis offers more realism by allowing arbitrary
temporal correlation (while assuming statistical stationarity) in
the towing vessel’s motion.

2) Mathematically Simple Models With Little Fluid Me-
chanics: A wealth of CRB analysis exists in the antenna-array
signal-processing research literature on DOA estimation with
uncertainties in the inter-antenna spacings. However, this
antenna-array literature presumes spatially! uncorrelated and
spatially stationary locational uncertainties from sensor to
sensor. Unfortunately, such assumptions are manifestly invalid
for a towed array, whose elements are strung up on a cable.
Spatial decorrelation, in the towed array context, would imply
rather implausibly that an upstream hydrophone’s positional
deviation has no effect on the downstream hydrophones’
positional deviations. Spatial stationarity would unrealistically
imply that the hydrophone secured at the tow point likely has a
positional deviation comparable with those hydrophones at the
tow cable’s unsecured free end.

Among all DOA estimation CRB work accounting for spa-
tial correlation among the sensors’ dislocation (see [4], [S], [9],
[10]1,[14], [17], [18], [20], [25], [26], [28], [29], [40]), none uses
an array-deformation model rigorously derived from fluid me-
chanics. Ad hoc statistical models for array-shape deformation
include [4], [9], [10], and [17], which assume as statistically
uncorrelated the transverse and array-length axis positional per-
turbations. In [4], the transverse perturbations to be spatially
correlated from hydrophone to hydrophone with a dependence
inversely exponential to the cable length connecting the two hy-
drophones, but without rigorous justification, are modeled. In
[9] and [10], the prior distribution for both the transverse un-
certainties and the array-length axis uncertainties is assumed
to be spatially uncorrelated Gaussian, which is an assumption
that unrealistically implies that hydrophones near the tow point
have positional variances comparable with those at the cable’s
free end. The rudimentary model of [17] postulates nothing be-
yond the aforementioned uncorrelated condition between the
transverse and array-length axis positional perturbations. An-
other ad hoc deformation model is used in [28], without any
physics-based justification, involving a transverse perturbation
whose standard deviation increases quadratically downstream
and a linearly increasing perturbation along the array-length
axis. The spatial correlation and the transverse/array-length cor-
relation in [28] are both 100% correlated.

The more sophisticated deterministic piecewise-linear model
presumes the relative angles between adjoining piecewise-linear
segments to be deterministic unknown constants. For example,

1“Space” as spanned by the array’s geometrical axes.

[22], [23], [29], [33], [34], and [38] use the deterministic piece-
wise linear shape deformation model for array shape calibra-
tion performance analysis. A stochastic piecewise-linear model,
assuming the relative angle between adjoining piecewise-linear
segments to be Gaussian and (implausibly? as) spatially uncor-
related, is used in [29] for DOA estimation.

Moreover, much of the above-mentioned deformed-array
bearing-estimation literature (all except [17], [28], and [29]
and unlike the present work) unrealistically assumes that no
uncertainty exists in the hydrophone’s gain and phase re-
sponses. This work attempts to be comprehensive in accounting
simultaneously for diverse array nonidealities.

B. CRB Literature on Deformed-Array DOA Estimation

The DOA estimation lower bounds herein derived are quasi-
Bayesian (hybrid) CRBs that characterize the best standard de-
viation obtainable using any unbiased estimator of a vector pa-
rameter. The CRB may serve as a performance metric in towed-
array design with any required level of bearing estimation accu-
racy.

The terms “quasi-Bayesian” and “hybrid” aim to contrast
against the standard CRB to signify that the vector-parameter
here has a deterministic subvector and a random nuisance-pa-
rameter subvector. The former consists of the incident sources’
unknown but to-be-estimated angles of arrival. The latter does
not need to be estimated but characterizes the array-shape defor-
mations, the phase/gain uncertainties of the individual acoustic
sensors, and other factors. The *“hybrid” (quasi-Bayesian)
CRB may be defined as a proper submatrix of the overall
vector-parameter’s CRB matrix, which is equal to the inverse
of the corresponding Fisher information matrix. The bound
depends on the a priori distribution (uncertainty) of the random
subvector. It depends only on the signal/noise statistical model
but not the particular estimation algorithm method used; how-
ever, the quasi-Bayesian CRB may be attained by an maximum
a posteriori (MAP) estimator of the parameter-estimation
problem [29].

The present analysis allows a broad class of Bayesian-like
statistical models parameterized with physically measurable
quantities. For example, certain independent parameters
[describing the tow-point induced (TPI) motion and oceanic
currents] in the Paidoussis equation are herein characterized
as stochastic with known prior distributions instead of as
deterministic unknowns. This quasi-Bayesian approach is
advantageous because the underlying fluid mechanical and
oceanic physical processes (that cause the array’s geometric
deformation) can be neither exactly measured nor precisely
estimated. Hence, they would best be modeled as stochastic
phenomena. As oceanic engineers gather new data and up-
date the statistics of such TPI-motion and oceanic current,
the statistical properties of the Bayesian parameters may be
estimated and substituted in the CRB formulas presented
in this paper. Lower bounds of the deformed towed-array’s
DOA-estimation variance can then be obtained along with the
general expressions for the quasi-Bayesian Cramér-Rao lower
bound, which is derived in [29]. Among all prior work cited
in the preceding paragraphs, only [4], [9], [10], [17], [28],

2See further discussion in the following paragraphs.
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and [29] also use a Bayesian approach, but (as discussed in
the preceding subsection) none of these papers model array
shape deformation based on rigorous fluid mechanics, as in the
present work.

This paper is partly based on the generic CRB expression
derived in [29] for sensor-array estimation under array uncer-
tainties. Because this expression might be numerically unstable
when the data-length ;¥ approaches infinity or when the covari-
ance matrices of array dislocations are small, this present paper
derives an alternative expression that is numerically more stable.
This new expression allows easy computation of the limit-CRB
for ¥ approaching infinity. As an example, the CRB is herein
computed in the case of a single source. The main contribution
of the paper, however, consists of computing physically mean-
ingful covariance matrices of array dislocations, which was dis-
cussed in the previous subsection.

II. MATHEMATICAL DATA MODELS FOR FAR-FIELD SOURCES
PROPAGATING THROUGH A DEEP-SEA CHANNEL

This section introduces the mathematical and statistical data
models involved in far-field deep-sea direction finding. &  far-
field narrowband sources impinge on an L-hydrophone array as
plane waves without time-delayed multipaths to produce at time
t the measured data vector:

d(t) = A(8,p)s(t) + n(t). (1

The /rth column a (8, p) of the L x A matrix A (8, p) represents
the /'th source’s steering vector, which has as components3
[ak(g’ p)h =g eﬁPl ejZT(Iluk+y('Uk+zéwk)/)\, ,
®))
where (i, vg, i) represent the Cartesian direction-cosines
of the /th incident source, g and 2, respectively, denote
the fth sensor’s unity-mean gain-perturbation and zero-mean
phase-perturbation, (g, #¢,z¢) symbolize the three-dimen-
sional (3-D) Cartesian position coordinates of the fth sensor,
and A denotes the wavelength. The /'th element in the A x 1
vector s(t) represents the /th frequency-down-converted
incident temporal signal and is modeled as a temporally uncor-
related zero-mean complex-valued circular-Gaussian stochastic
process with s(¢) having the a priori unknown covariance
matrix €. The /th element in the L x 1 vector n(¢) refers to the
spatio-temporally uncorrelated complex-valued additive noise
at the Ith hydrophone, with a priori unknown variance o2
The g x 1 vector & contains as its elements the to-be-es-
timated unknown deterministic signal parameters, e.g., the az-
imuth and/or elevation angles or, equivalently, the Cartesian di-
rection cosines. The Jfp » 1 nuisance vector p consists of the

nuisance parameters — {g¢, ¢, ¢, #te, =, £ =1,..., L}. Fur-
ther, define E = [.‘)'17"'7.‘)'L]Ta v = [‘:—"‘17"'7‘;"L]T , X =
[, o)ty = [n,..u)T, and 2 = [0, 2T

These stochastic parameter vectors are modeled as mutually in-
dependent and real-valued Gaussian distributed, with a priori
known nominal means go, v?), X0, Yo, Zo, and a priori known
covariance matrices £2a4, A4, $2A4, §2A,, and §24 .. Hence, p

3The index & will be dropped in the case of a single source.
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may be represented as a real-valued, Gaussian, stochastic vector
with a priori known mean p, and a priori known covariance ma-
trix £2p. To summarize, the present data model involves the un-
known stochastic entities of p, s(t) and n(t), plus the unknown
deterministic entities of 8, €}, and o2. However, only & needs
to be estimated.

III. NEW CRB EXPRESSION COMPATIBLE WITH VARIOUS
TO-BE-SPECIFIED QUASI-BAYESIAN MODELS OF ARRAY
NONIDEALITIES

In [29], there is a “generic” quasi-Bayesian CRB expression
applicable to far-field deep-sea nonideal array direction finding.
Building on [29], this section will develop CRB expressions that
1) are numerically more stable and applicable to any number of
incident sources, 2) reveal the multisource CRBs asymptotic be-
havior as the data-length /¥ approaches infinity, and 3) link to
the physical quantities parameterizing various array nonideali-
ties in the single-source case. From [29]:

E[(8—8,)(8—80)"] =CRBy
1 DLy
=+ [Cog~Cpa(Cppt(2N Q) )" C gl

3
where
Cgg =Re{Dy M Dy}
(real-valued, Ay x Afp in size) 4
Cpg =Re{D, MDp}
(real-valued, Af, x fy in size) Q)
Cpp =Re{Dj M Dy}
(real-valued, Af, x M, in size) (6)
dvec[A(8,p)]  dvec[A(8, p)]:|
Dy = _ yorey—
ey dﬂ_ug
(complex-valued, LA x Afy in size) (7)
D, = {Uvec [A(0.p)]  dvec[A(, p)]:|
dpy AP
(complex-valued, LA x A, in size) (8)
M =0 2{,A (80, p, )R A(8, po)S2 )T % I3
(complex-valued, LA™ x LA in size) 9)
R = A(8o,p,) AT (80, py) + 021
(complex-valued, L x L in size) (10)

I} =I-A(8o, po)(A(Bo, po) T A(80,p0)) " A(80, p)"
(11)

(complex-valued, L x L in size)
where % denotes the Kronecker product, &, represents the theo-
retical value of 8, and the derivatives in (7) and (8) are evaluated
ford = @y and p = py.

The CRBy expression in (3) might be numerically unstable
because IT j is rank-deficient, as IT j represents a projection op-
erator such that II{A (8, p,) = 0. This means that Cpp and
M are both rank-deficient, and consequently, the to-be-inverted
term Cpp+(2¥82p) ~* might be ill-conditioned for large N§2p.
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Assume that A has full column rank. Then, the projection
operator Hj has rank L — A" and

I = B(B”B)~'B" (12)

where B consists of the L — A linearly independent columns
of IT j that span the column space of II j Usually, B can be
formed from the first L — A columns of IT%, ie., B = I}J,
where

J = [I(L—f\-)X(L—J\-):| . (13)
Orx(z—n)
Put
My = o 2{Q2, AT (8y, p, )R LA (8, py)S2 )T (14)

so that M of (9) may be written as M = M, « II j Then

Cgg =Re{DjMDy} = Re{Dy (M, 1II;)Dgy}
=Re{Dy [My%(B(B”B)~'B”)|Dg}
=Re{Dg (I B) [Mo(B¥B) '](IxB)" Dy}
=[Re{Dy (IzB)}, Im{Dy (I B)}]

Re{Mox (BFB) '} —Im{Myx(B¥B) '}
X[Im{l\-loux:(BHB)*l} Re{My=(BHB) 1}
[Re{Dg(qu:B)}T
x

Im{Dg(Inx:B)}T
=WMW" (15)
where I denotes the identity matrix of size A x &', and
W =[Re{Dg (I B)},Im{Dy (I B)}] (16)

A = [Re{Mo & (BYB)~!} —Im{M,  (B¥B)~'}
7 |Im{M, % (BPB)~!} Re{M, % (BFB)"'} |

a7

Similarly, it can be shown that
Cpp =SM.WT (18)
C,p =SM.8” (19)

where

§ = Re{D, (I B)},Im{D (1% B)}]. (20)

Inserting (15), (18), and (19) in (3) and applying the ma-
trix inversion lemma (A + BC)™! = A~! — A71B(I +
CA~'B)"!CA~!, which holds for any size-compatible
matrices A, B, and C, and providing all relevant inverses exist

[CRBg) ™
=N [WM WT-WM.87 (SM.ST+(2N€)) 1) 'SM. W]
=N WM, — M.8"((2NQp)~" + SM.8") " 'SM.JW"
=NW(M, ' +28870Qp8) W7

-1
Q‘IN M;l) w7’

Note that . of (17) is regular, provided that Iy in (14) is
regular because Mg 5% (B B)~! would then be regular as well.
Thus, the new CRB expression in (21) is numerically stable for
large ¥, unlike (3).

:% W (STsz,,S + 21)

< .

Fig. 1. Coordinate system for a towed-array of hydrophones with one far-field
incident source.

The limit-CRB for N going to infinity easily follows:
CRB) ™ ™% lin CRBy = 2[W(87Q,8) 'W7] L.
N—=
(22)
The limit has the interpretation that it describes the best achiev-
able residual variance of the DOA-estimate due to array uncer-
tainties.

To detail the impact of array-shape uncertainties and of the
gain-phase uncertainties on direction-finding accuracy, the
subsequent analysis assumes a single incident source (i.e.,
A = 1) for mathematical simplicity. Without loss of generality,
the nominally linear towed array is assumed to align along
the :r-axis; hence, the x-axis Cartesian direction-cosine needs
be estimated. That is, # = # = cosvr; see Fig. 1. From (2),
a(8, p) = g & ¢’®, where ¢ denotes the element-wise product,
and & = @+ 27/ A (xtt +yv + z ).

Further assume that uncertainties in the hydrophones’ gains,
phases, and locations are mutually independent. Then, random
deviations of p around its nominal value p, have the a priori
covariance matrix

!!p = dlag(!l‘;g, !!A%’? EIAX7 !!Aya slAz)- (23)
For the above-defined a(#, p)
da(8, 27 )
Dp= 208 2 abhp) @Y
where i3: denotes the element-wise product, and
D, - da@,p)
dp
_ [9a(8.p) va(®,p) va(8,p) va(l,p) Ja(8,p)
Sl odg T de T ux T gy T dz
= [diag(e’®), jm % diag(a)] (25)
where
m = {1, 2771- ", 277rv7 2; re'] (26)

Note that M of (14) becomes the scalar 2/,
Mo=02(QATR 1AL,

2
= U—; af (0?1 + Q2 aaf)"1a

2 1 2
= U; afl {;I - U—:(l + 0_2£25||a||2)_1aaH] a
@7lz)?

=5 = _ 27
(0 + .1l @7
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In (27), the matrix inversion lemma is used along with ||a] =

lg]l- The matrix B, containing the basis of the column-space of

I, may be chosen arbitrarily. However
B = I} diag(e/®)J (28)

would be a convenient choice,* giving

diag(e=i9) aal s
DB = g I-==_1|4 9y J
8= |t ) (1 o] 9™
I L
:{. ol H T (29
—m?” & (diag(g)ll; J)| [—m" & H
where
H
1 EE
=1-22_ (30)
! lI5]?
H = diag(g)II; J (31)

After some algebra, (20), (17), and (16) can be rewritten as

m-J 0
5= 9 2
{ 0 -mT & H ¢2)
W= { —27” TH} (33)
1 -1
M, =31M [(JHQ J) P } (34)
0 (JHg -t
Combining (32) and (23)
T L *
5748 = [* HT!IAUH} (35)

where the blocks denoted by the asterisks are not displayed, and

21\ ?
Qp, = Qa0 + (—) [ Qa, + 02 2y + 12 Q4] (36)

A
Inserting (32)—(35) in (21) gives

11 1 !
[CRBg] 1:— W (sTsz,,s + 5w M;l) w7

27r

3 -t
=57 xTH (HTSIA”H—f— OJHL) HTx.

(37

The CRB depends on the hydrophones’ gains by means of the
matrix H defined in (31). It is independent of the uncertainties
in the hydrophones’ gain 25, but depends only on £24 ., which
combines the hydrophones’ phase uncertainties and location un-
certainties. This is because all arrival-angle information is con-
tained in the phase of the data; cf. (2). For multiple sources (i.e,
A = 1), these uncertainties have more complex interactions;
and the general formula in (21) would be necessary.
N — x gives the asymptotic CRB

/\2
22

4The exponential term in (28) is allowed because the scaling of the columns
of B is arbitrary due to the projection in (12)

CRBy ™™ = x"HH"Q, H)'H X7 (38)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 1, JANUARY 2004

As expected, the limit-CRB is independent of the additive
noise’s variance o2, which drops out along with A/ of (27).
The CRB does depend on the array geometry not only through
the vector of sensor coordinates x but through the error co-
variance matrix 25, as well, which incorporates the sensor
location uncertainties.

IV. NEW FLUID-MECHANICS-BASED STATISTICAL MODELS OF
A NOMINALLY LINEAR TOWED ARRAY’S SHAPE DEFORMATION

The derivation of the Paidoussis equation in [21] is herein re-
visited in order to incorporate a new term for the fluid flow’s
transverse speed and normal speed caused by oceanic streams
and swells. The fluid flow’s instantaneous normal speed is mod-
eled as an homogenous stationary Gaussian random field with
known space-time correlation structure, which may be mea-
sured offline and tabulated for different field conditions. This
Gaussian assumption is for mathematical simplicity and is not
unreasonable because statistical distributions with longer “tails”
(thereby implying a higher probability for very high fluid-flow
speeds) can hardly be observed here due to fluid viscosity.

The towing vessel transversal motion represents another
cause of array deformation. Already accounted for in the
original Paidoussis equation, the towing vessel’s transversal
motion is herein assumed to be due to the vessel’s small random
maneuvers and is modeled as a Gaussian random field with
known space-time correlation structure (which may be mea-
sured and tabulated off-line) and as stochastically independent
of the fluid flows along the array.

The Paidoussis equation is discretized both in time and in
space and consequently used to derive physically meaningful
covariance matrices of the sensor location uncertainties, 2,
2,, and 2. for use in the quasi-Bayesian CRB. The fol-
lowing developments will consider only small array-shape de-
formations. Since the tow-cable is assumed neutrally buoyant,
the horizontal deformation and the vertical deformation obeys
the same differential equation (but possibly with different con-
stants for the two directions). Hence, with no loss in generality,
the subsequent analysis will express only the horizontal defor-
mation’s €25, in terms of physically measurable constants. Sub-
sequent simulation examples will assume that 25 . = £24,,. Fi-
nally, relative longitudinal contractions of the array can be ne-
glected thanks to the small array-shape deformation assumption.
It follows that £2o, == 0.

A. Generic Model of Towed Array Fluid Mechanics

Two causes exist for towed-array deformation: 1) the
towing-vessel’s transverse motion or varying speed and 2)
oceanic swells and currents. The Paidoussis equation [1]-[3],
[71, [8], [11], [12] describes the fluid mechanics through which
the two above-mentioned factors affect the shape of a towed
array. More precisely, the Paidoussis equation describes the
dynamical behavior of a flexible and cross-sectionally thin
cable towed through a certain fluid:

2 i i i
m.—d :J(tt; r) —% (T(. )d,r((f. r))-f—fA(t )+ falt,x)
X St x
Ffn(t) = frlt,x) d”gf’f ) Y (‘; (f4 ) —0. (39
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Fig. 2. Enlarged segment of the deformed towed array.

L=1]

The notation is as follows:

#(t, ) towed-array’s transverse displacement at time ¢ and
location :+ along the array’s length;

i towed-array’s per-unit-length mass;

T(x) tow-cable’s spatially variable tension;
fa(t,x) inviscid force due to the acceleration of the tow-
cable’s virtual mass;
fn(t,x) per-unit-length viscous force acting on the
tow-cable in the normal direction;
fr(t,r)  similar force acting in the tangential direction;
I tow-cable’s bending stiffness.
From [11] and [38],
. 12
i ol
fa(t,n) =Af [& + U m] i(t,x) (40)
MV (t,2)]? .
In(t,x) = % ¢y win () 41
M[V(t,2)]? .
fr(t,x) = % Yy cos (¢, 1) 42)
L
T(w) = T(L) — f Fr(t, )
‘L
=AU + / fr(t,x)d 43)
with these notations:
Af displaced fluid’s per-unit-length mass;
D towed-array’s cross-sectional diameter;
[ towed-array’s normal drag coefficient;
oA towed-array’s tangential drag coefficient;
o form drag at the trailing end (= 0 for a free end);
U tow-vessel’s speed along the positive ::-axis;
tow-cable’s speed relative to distant fluid;

angle between the relative velocity of the sur-
rounding fluid flow and the local tangent of the
cable.

#A(t, ) depends on {7 but also on the fluid flow’s transverse
speed v;(t,:r) and normal speed v, (¢,:) due to the ocean
streams and swells (see Fig. 2).

To summarize, the inputs to the fourth-order partial differ-
ential equation in (39) are U7, v:(¢, ), and v,,(¢,:x), under the
TPI-motion defined boundary condition (¢, 0), and the output
is y(¢,.r): the towed-array’s space-time deformed geometry.

Prior researchers (to the best of the authors’ knowledge) have
overlooked the statistical influence of oceanic currents on array
shape deformation in the Paidoussis equation. One contribution

of the present work is to rigorously characterize the statistical
effects of v, (¢, ') and vy, (¢, ) in the Paidoussis equation on the
hydrophones’ dislocation.

Under the reasonable assumption that the tow-speed
greatly exceeds the surrounding water’s flow velocity (i.e.,
U7 3 vty x), U 3 v,(t, ), it holds that V (¢,x) == {7 and
A(t,x) = 0. The latter approximation means that hydrophone
dislocation is substantial only perpendicular to, but not along,
the array axis. Referring to Fig. 2

sin (¢, ) == A(t, )
L [de(t ) L du(t ) N .
= [ U St — 1) | (44)
cos it ) = 1 (45)
 L—uw :
T(r) = ((_,-t TH‘;) RViich (46)

Assuming that the tow-cable is sufficiently flexible to neglect
the bending stiffness term 3 (&* (¢, 1) /ékx*) in (39), the fourth-
order Paidoussis equation in (39) may be reduced to second-
order:

2yt ) i C 97
N/ A — e ¥
e v IEACEY
i L L—w N Lt e)
d: K(‘t D ("f) M
MU? L dy(ta)
-  —
2, ehr
L MU [dn(t,x) dy(t,x) .
'_rn 4 : —Up(l,i — L/ =0.4
+ < D { ot +I o vp (L, — )| =0. (47)

Moreover, because [} <« L, the subsequent analysis will ignore
those terms in the above equations that are not inversely propor-
tional to £3. This second approximation results in the small-di-
ameter Paidoussis equation® [21]:

Py(t,x) a, {U;,r(t, )

& —L LA SEAREA
(0= L) =52 U | ot
. U?J’(tv'“)

+I — (b, —tL7)| =0. (48)
The subsequent analysis will model v, (¢,:x) as a two-di-
mensional random field of Gaussian distribution, with zero
mean and an a priori known spatio-temporal covariance
function. This random field is modeled as statistically sta-
tionary over space (i.e., array length) and time; hence,
Elop(t, 2)o, (', 2")] = ep(t — ¢/, — 2'), the mathemat-
ical form of which reflects oceanic conditions and may be
empirically determined. Moreover, this random field may be
statistically correlated over time; an illustrative case of AR(1)
will be analyzed in detail.

B. Discretizing the Small-Diameter Paidoussis Equation

Toward solving the above partial differential equation, the
space-time discretization in [21] and [38] is herein adopted to
represent array shape deformation as a finite-dimensional state-

5The small-diameter Paidoussis equation in [21] does not include the
—v,(t,x — tU) term in (48) because [21] neglects the effects of oceanic
currents.
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space, with the towed-point induced temporal motion and the
oceanic currents’ space-time behavior as the system’s driving
inputs. Referring to Appendix A for details

#((i + 1)Hy,0)
y((i+1)Hy, H)

#(iHy,0)
#(iH,, H,,)

Lyt + ym, (ar -y (iHy, (Mg — 1)H,)

:yzir-H) (lé:},r(i)
to(iHy) vy (iHy, —iH,)
0 v (tHy, —(i — 1)Hy)
+ . + H; ) (49)
0 vn(iHy, —(i — Al + 1)H,)

(i) ()

where F represents the transition matrix, ¢+ denotes the dis-
crete-time index, {1, symbolizes the number of discretization
steps along the array’s length, and H, = L/(M; — 1) and
H, = H,/U, respectively, represent the discretization step
sizes in space and time. The stochastic vector u(z) stands for
tow-point induced (TPI) motion, where {to(iH;)}.%, is a
statistically stationary random sequence. Although [21] and
[38] model {1o(iH:)};=, as a temporally uncorrelated noise
sequence, this present work will model {o(iH;)};=, in the
mathematically more general and physically more realistic
form of a temporally correlated random sequence. The sto-
chastic vector v(i), which is not included in [21] and [38]¢
but is newly introduced in this present work, represents the sea
water’s spatio-temporally correlated currents.

This above discretization scheme serves only as a mathemat-
ical technique to solve the partial differential equation in (47)
but imposes no presumption on the physical behavior of the
towed array. This discretization is to be distinguished from the
piecewise linear model of array deformation [22], [23], [29],
[33], [34], [40]. The latter array model assumes the towed array
to behave like a concatenation of rigid linear segments, jointed
at arbitrary angles. The above discretization makes no piecewise
assumption regarding array deformation.

Although the transition matrix F is strictly speaking a tridiag-
onal matrix (see Appendix A), empirical researchers [21], [24],
[36] find it useful to use the first-order approximation

F = n(H,)L

where ex(H, ) (with 0 < «¢(H,) < 1) denotes the damping over
alength H, for TPI motion propagating down the array’s length,
and

(50)

0 0 0
10 - . .

L=|0 10 - -|. (51
0 - - 10

With respect to the formulation of (50) and (51) developed in
[21], [36], and [38], the present paper offers the following new

SInstead, [21] and [38] have a statistically stationary and spatio-temporally
uncorrelated driving input as a “catch-all” function to include all modeling er-
rors.
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insight: The length-dependent damping coefficient ¢ is physi-
cally related to H, such that «v(H, + H.) = ev(H, )ex(H],) for
any arbitrary positive numbers H,, and H,; hence, r¢(H, ) must
take on the mathematical form of an exponential function of H,,
ie.,

w(H,) = e Catlz (52)
when (7, represents an empirically measurable constant depen-
dent only on the sea water’s and the array’s physical properties,
namely, on ; and (7,,. A smaller (¥, means less damping of
towed-point induced or ocean-induced transverse motion along
the array’s length. For notational simplicity, the argument H,
will be omitted from ¢« wherever possible.

C. Solving for the Towed-Array’s Space-Time Shape
Deformation

This subsection advances an original solution to (49) for u()
and v (%) that is stationary and stochastically independent. Note
that the tow-point’s transverse displacement has been empiri-
cally determined to propagate down the array at close to the
tow-boat’s speed with little damping [21], [36]. Equation (49)
has a bounded (in the least square sense) solution y (%), provided

that ||F|| < 1 for some matrix norm || - ||. Hence
~ . e .
y(i)=> Flu(i-j)+> Fv(i-j). (53
=0 =0
d;fUF(’L_) défVF(i)

For the F in (50), the condition |F|| < 1 is equivalent to et < 1.

From the independence assumption for u(i) and v(i), the
hydrophones’ location uncertainties have the following spatio-
temporal covariance

cov[y(7)] = cov[up(i)] + cov[vr ()] . (54)
~———

—_—

def def

o, =CuF =defCy .

The hydrophones’ dislocation covariances may thus be deter-
mined once the specific form of the above two right-hand-side
terms are known, perhaps from empirical measurements or
databases. The above entities are not functions of ¢ because of
the temporal stationarity assumption.

The towing-vessel’s motion and the oceanic currents repre-
sent statistically independent inputs to the towed-array system
in (47) and (53); hence, the system’s output equals (as expected)
a sum of the system outputs due separately to either input. The
main problem solved in the section is to express the above terms
Cy, and Cy, in terms of the covariance of the TPI motion
C, and covariance matrices of instantaneous fluid speeds Cy,
which are assumed to be known.

For hydrophones nominally at {1, ...} from the tow-
point, where i, = &, H, for integers {&,,me = 1,..., L},
define [Cy e, ¢, défcov[;,r(t,;r:g), #(t,ay)] for £ =1,..., L.
Notice that [Cy ¢, ¢, is the (£,+:)th element of the desired ma-
trix £25,. Under assumption (54), [Cy]¢, ¢,. may be expressed
as [Cuyle, .. + [Cvilee,., where the first term is due to TPI
motion, and the second term is due to oceanic currents. The
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form of [Cy, ¢, ¢, remains to be derived from the spatio-tem-
poral statistics of up as well as [Cy . J¢, ¢, from the spatio-tem-
poral statistics of vp. Each term is to be studied separately
below, with detailed attention given to the particular illustra-
tive case of first-order autoregressive auto-covariances for the
TPI motion and of oceanic current velocities. The resulting co-
variances [Cyle, ¢, turn out to be largely independent of the
space-time discretization, assuming the discretization to be suf-
ficiently fine.

D. New Statistical Modeling of Tow-Point Induced
Towed-Array Shape-Deformation

The towing-vessel’s motion has been modeled in [21] as tem-
porally uncorrelated, which may be physically unrealistic for
high time-sampling rates. Instead, the analysis here allows arbi-
trary temporal correlation (but requires statistical stationarity)
in the towing-vessel’s motion. The following expresses C,,, in
terms of the spatio-temporal statistics of up, first for the gen-
eral case of any statistically stationary (but otherwise arbitrary)
spatio-temporal covariance and then for the special case of a
first-order auto-regressive temporal covariance. All subsequent
expressions will turn out to be independent of the discretization
grid used earlier.

Assume that {no(iH;)};=, is statistically stationary, zero-
mean, and with a Toeplitz covariance matrix C,, containing el-
ements [C,]; ; = Elwo(iH)to(jHe)] fori,j = 1,..., M.
Hence

:iFJUY—_]

:[rro(th evtio(i—1) Hy)), .

(55)

and up () has the spatial covariance matrix C,,,, = F,C,F,,
where F,, = diag[l, e, 6%, ... ™2 ~1]. Thus

[Curlere, = o 2[Cle, 6, Fim=1,...,L. (56)

The above equation constitutes this subsection’s main contribu-
tion, relating the positional uncertainty’s covariance function to
the TPI motion’s spatio-temporal covariance function.

For the special case where the TPI motion may be represented
as an AR(1) temporally random process,’

“Cul€e—mlHe g gy =1, L

[Cule,c,, = 0one (57)

where (7, and o2 represent constants that may be empirically
measured: 03 denotes the variance of the TPI motion, and (7,
characterizes the time correlation of the TPI motion. Given (7,
the time delay At [in which the correlation between t(t) and

ito(t + At) decays to 1/10] equals log; 10/(%,. Combining (52),
(56), and (57)

[Curlers, =le” ] &ten=2 o8

— inefca(z[‘F-T')n)

_)Uie—ca(z[+mm)—Cum—mmI/U7 H,—0 (58)

e~ Culéc—&m|H

—Culzi—zm |/U(372CHH1

and may be substituted into (54) to give the towed-array’s
space-time shape-deformation covariance. The expression on

TFor covariance functions of the general AR(i) form or the general
ARMA(i, j) form, see [37].

T
Lt rfo((z'—_-UL—{—l)Ht)]

the right-hand side of (58) is the covariance element for an
infinitely fine discretization grid.

E. Statistical Modeling of Ocean-Induced Array Shape
Deformation

The following will express Cy,. in terms of the spatio-tem-
poral statistics of vy, (t, 1), first for the general case stipulating
only statistical stationarity and then for the special case where
the auto-correlation of v, (£, ) is AR(1) in both space and time.

Define C. (j) ' E{v(t)vT(t + )}, for j = 0,41, £2....
With the spatio-temporal covariance function ¢, (¢,:) of the
space-time random field vy, (¢, 1) characterizing fluid flow, (49)
implies [Cy (j)]e,m = HZ co(Hy, (e — £ — §)H,,) for £,an =
1,...,M. Define

-1
Z F" Fm Z F" Fm)
wi=0 1wi=0
(59
The last equality holds because F*** = 0 for #: = Afp, given

F defined in (50). As C,(j) is Toeplitz, some straightforward
manipulation gives

1— fl_min{ﬂ,m}

[CV(j)]f,m = [Cv(j)]l,m 1—m cHm=1 LML
(60)
Referring to (50), (53), and (59)
= Z Z FE[v(i — #)vT (i — m)] (F")T
=0 =0
= Z Z FIICv £ —n) (F”’)T
=0 =0
M1
=C,(0) + Z [F"Cy (1) 4+ Cy (=) (F™)T].
wi=1
(61)

The above equation represents this subsection’s key contribu-
tion, relating the positional uncertainty’s covariance function to
the oceanic flow’s space-time covariance function.

Consider the illustrative case of v,,(, ) being AR(1) in both
space and time

Cyit—=Cyex

col(t,x) =02 e” (62)

where o2, (,;, and (7, are physical constants that may be em-
pirically measured. o2 is the total variance of oceanic flows,
whereas (,; and (7, determine the correlation length of the
random field v, (t,x) in reference to, respectively, time and
space; cf. (57).
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Referring to Appendix B for details, for & = x¢/Hy, & =
-'f-'m/Hm, #g <y, and Hy — 0,
. Tve”

1
LU [

_e=Care _ o=(CatCut/U)(@m —14))]

[CVF ]Ef Em
2,=Chz|T—Tm|

[e—<ca +Cut /)t 4 o(CotCot /U,

R S [2_e—<ca+cu/vm o~ (CatCrtf V)
ol + Oy

—e_c“z"(l — e_(c“"'c“/U)('Tm_m‘))] } (63)

and may be substituted into (54) to give the towed-array’s
space-time shape-deformation covariance.

FE. Summary of Notations of Constants

For easy reference, the following summarizes the notations
used in the above two subsections to describe the AR(1,1)
oceanic-current model and the AR(1) TPI-motion model.

03 variance of the TPI motion;

[ constant characterizing the temporal correlation of
the TPI motion (57);

o? variance of the oceanic flows;

v
constant characterizing the temporal correlation of

~t

‘vt
the oceanic flows (62);
o constant characterizing the per-unit-length correla-
tion of the TPI motion (62);
H, constant in the exponential dumping model (52).

V. NUMERICAL EXAMPLES

A. Example 1: Variance of Positional Deviation Along the
Towed-Array

Fig. 3 plots [Cy s, and [Cy ], . along the array’s length
' when the towing-vessel’s motion is an AR(1) temporal sto-
chastic process and when the oceanic currents may be modeled
as a spatio-temporal AR(1) space-time stochastic process. The
simulation parameters are as follows: The towed-array has the
damping parameter ¢, = 0.00% (m~!) (corresponding to a
damping factor «v = 0.95 per 6.25 m of tow-array length [24]),
the TPI-motion has the variance ¢2 = 1 (m?) and (%, = 1
(s™1), the ocean-induced motion has variance o2 = 0.01 (m?)
and fy, = 1 (m™ Y and &y = 1 (s71).

As . increases (i.e., further from the tow point), the TPI mo-
tion becomes less significant, but the oceanic flow becomes
more important. A faster tow speed does not affect [Cy]zz
which is intuitively reasonable as the angle :3(¢, 1) between the
array and surrounding fluid’s relative velocity also decreases
with increasing tow-speed, thereby diminishing the influence of
the oceanic currents.

The following examples illustrate the dependence of the CRB
of # on various physical parameters in the far-field deep-sea
single-source scenario, where the towed-array has uniform half-
wavelength spaced hydrophones moving along the x-axis.
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Fig. 3. Standard deviation of positional deviation along the towed-array.

Dashed line: Influence from TPI motion. Solid line: Influence from fluid-flows
for tow-speeds shown. Referring to (52), (57), and (62), C, = 0.008 02 =1
(m?),C, =1m*'),02 =001m?"C,, =16 "),andC,, =1
(m~1). The tow speed is U = 1, 3 and 5 (m/s), respectively.

SQRT(CRB) [degrees]

10*LOG10(SNR)

LOG10(N)

Fig. 4. Square root of CRB (in degrees) versus the number of observation
snapshots N and versus the SNR Q, /o2,

B. Example 2: CRB versus the SNR and Number of
Snapshots

Fig. 4 plots the square root of the CRB (in degrees) versus the
SNR = £2, /02 and the number of snapshots . The array has
L = 25 hydrophones, equispaced at 6.25 m (corresponding to
a frequency of 120 Hz [24]) and towed with speed {7 = 3 m/s.
The hydrophones’ phase uncertainties are uncorrelated with a
3° standard deviation, implying 21, = (337/180)2I (rad®). All
other simulation parameters remain the same as in Example 1.
Fig. 4 shows that for SNR > 0 dB, the CRB approximates the
large-¥ limit-CRB, even at ¥ = 1. Moreover, the limit-CRB
does not depend on the SNR.
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Fig. 5. Square root of the limit-CRB (with N — o0) versus the number of
hydrophones L and versus the tow-speed U.

C. Example 3: CRB Versus Number of Hydrophones | and
Tow-Speed it

Fig. 5 plots the large-¥ limit-CRB versus the towed-array’s
number of constituent hydrophones L and the tow-speed {7
(m/s™1). All other simulation parameters remain identical
as in Example 2. As expected, the CRB in Fig. 5 decreases
(i.e., the potentially achievable accuracy improves) with more
hydrophones and a faster tow-speed.

With at least 30 hydrophones in the towed-array and at
low tow-speed, adding more hydrophones to the towed-array
(while maintaining the towed-array’s half-wavelength inter-hy-
drophone spacing) will offer more improvement in the
direction-finding’s CRB when the tow-speed is faster than
when the tow-speed is slower.

D. Example 4: CRB versus the TPI Parameters

Fig. 6 plots the large-.¥ limit-CRB versus the TPI-motion pa-
rameter (7, (s~1) and the damping parameter (%, (m~?!) in the
absence of oceanic currents and hydrophone gain/phase uncer-
tainties. The TPI motion is statistically independent but identi-
cally distributed along the #- and -axes. The limit-CRB, which
is plotted in Fig. 6, is proportional to the TPI transversal mo-
tion’s variance o2 but is independent of the SNR. The CRB also
depends significantly on (/,, but only slightly on (*/,,. Recall that
(%, == 0 (m~1) means low-frequency TPI-motions (say, due to
the towing vessel’s slow maneuvers) and a moderate ¢, corre-
sponds to TPI-motions similar to white noise. For fixed (,,, the
CRB has a broad plateau with respect to (7,,.

E. Example 5: CRB Versus the Oceanic-Current Parameters

Fig. 7 plots the large-.¥ limit-CRB in the absence of TPI mo-
tion and hydrophone gain/phase uncertainties versus the oceanic
current parameters (. and (7,,; for oceanic current that is sta-
tistically independent and identically distributed in the vertical
and horizontal directions. All other simulation parameters re-
main the same, as in the previous example. The CRB, which
is plotted in Fig. 7, decreases with increasing (-, and with in-
creasing (7, as expected. For (7, == 0 (m~Yand 7y = 0

)

2
v

10*LOG10(CRB/s;

c LoG10(C,)

Fig. 6. Limit-CRB (with N — oc) per unit TPI-motion’s variance (in the
absence of oceanic currents) versus the TPI-motion parameter C', and versus
the towed-array transversal movement’s damping parameter C., .

10"LOG10(CRB/S?)

Limit-CRB (with N — ©0) per unit oceanic current’s variance
(assuming no TPI motion) plotted versus oceanic motion’s AR(1) space-time
parameters C',; and C, ...

Fig. 7.

(s~1), the oceanic current’s velocities are more correlated over
space and over time, implying that the instantaneous velocities
v, (t,x) and v, (t + At,x + Ax) are more likely to have the
same sign, and array deformation would consequentially have a
larger variance.

VI. CONCLUSION

This work represents an initial step to bridge a serious
literature gap in deformed towed-array direction-finding
performance analysis by incorporating into the statistical
measurement model several essential fluid-mechanics consid-
erations while deriving mathematically rigorous quantitative
expressions and qualitative insights into how DOA estimation
may depend on physically measurable sources of array de-
formation. Among various derived properties of the far-field
deep-water single-source CRB, especially noteworthy is its
independence from the hydrophones’ gain uncertainties.
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APPENDIX A APPENDIX B

Discretization of the Paidoussis equation is achieved [21],
[36] by substituting ¢ = +H; and :x = w:H, in the Euler ap-
proximation

U;,f(t, -'f-') —~ ym(i + 1) - y:n(i)

it H, 9
di,f(t7 -'f-') — ym(i) - YEnfl(i)

dr H, 65

Uz?f(tv -'f-') —~ ym(i) - 2}’»;—1(77) + ym—2(7.f) (66)

a2 H?

where y,, (i) denotes the (+1:+1)th element of y () in (49). After
some manipulations

ym(i + 1) = ymfl(i) + Htvn(th., '.I‘IE.H_T — LHt{')
<y L—mH, . .
(T H [Ym( ) 2ym7 (Z)—I—yner(Z)]- (67)

The last equation may be written in matrix form as (49), where

F=L+Dp(I-2L+L? (68)
where L is defined in (51), and Dp = diag(#y, do,..., 85y, ) is
a diagonal matrix with

y L—mH,

By = E HT

, = (69)

L. AL

In [21], [24], and [36] replacing (68) by F = L with a scalar

correcting factor rv is suggested.

Let:y = FH, and x}, = £H,, & < £. Then, we have (70),
shown at the top of the page. Further simplification is obtained
by the Taylor series expansion, which is valid for small H,.

1l—w=1-—¢ %H ¢ H, = O UH,

and for an arbitrary || < 1, it holds that

k—1
o

=1

,Yk—l

771_
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Performance Analysis of the FastICA Algorithm
and Cramér—Rao Bounds for Linear
Independent Component Analysis

Petr Tichavsky, Senior Member, IEEE, Zbynék Koldovsky, Member, IEEE, and Erkki Oja, Fellow, IEEE

Abstract—The FastICA or fixed-point algorithm is one of the
most successful algorithms for linear independent component anal-
ysis (ICA) in terms of accuracy and computational complexity. Two
versions of the algorithm are available in literature and software:
a one-unit (deflation) algorithm and a symmetric algorithm. The
main result of this paper are analytic closed-form expressions that
characterize the separating ability of both versions of the algorithm
in a local sense, assuming a ‘“‘good” initialization of the algorithms
and long data records. Based on the analysis, it is possible to com-
bine the advantages of the symmetric and one-unit version algo-
rithms and predict their performance. To validate the analysis, a
simple check of saddle points of the cost function is proposed that
allows to find a global minimum of the cost function in almost 100 %
simulation runs. Second, the Cramér—-Rao lower bound for linear
ICA is derived as an algorithm independent limit of the achievable
separation quality. The FastICA algorithm is shown to approach
this limit in certain scenarios. Extensive computer simulations sup-
porting the theoretical findings are included.

Index Terms—Blind source separation, independent component
analysis (ICA), Cramér-Rao lower bound.

1. INTRODUCTION

LIND SOURCE separation (BSS), which consists of

recovering original signals from their mixtures when the
mixing process is unknown, has been a widely studied problem
in signal processing for the last two decades (for a review,
see [1]). Independent component analysis (ICA), a statistical
method for signal separation [2], [3], is also a well-known issue
in the community. Its aim is to transform the mixed random
signals into source signals or components that are as mutually
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independent as possible. There are a number of methods in-
tended to solve related problems such as blind deconvolution
and blind equalization [4]-[6].

One of the most widely used ICA algorithms for the linear
mixing model is FastICA, a fixed-point algorithm first proposed
by Hyvirinen and Oja [7], [8]. It is based on the optimization
of a nonlinear contrast function measuring the non-Gaussianity
of the sources. A widely used contrast function both in FastICA
and in many other ICA algorithms is the kurtosis [9]-[11]. This
approach can be considered as an extension of the algorithm by
Shalvi and Weinstein [6].

There are two varieties of the FastICA algorithm: the defla-
tion, or one-unit algorithm, and the symmetric algorithm. The
deflation approach, which is common for many other ICA al-
gorithms [9], estimates the components successively under or-
thogonality conditions. The symmetric algorithm estimates the
components in parallel. This consists of parallel computation of
the one-unit updates for each component, followed by subse-
quent symmetric orthogonalization of the estimated demixing
matrix after each iteration. A version of FastICA for complex
valued signals was proposed in [12].

An essential question is the convergence of the FastICA al-
gorithm. This can be approached from two directions. First, as-
suming an ideal infinitely large sample, theoretical expectations
for the contrast functions such as the kurtosis can be used in the
analysis. Then, the contrast function and the algorithm itself be-
come deterministic, and questions such as asymptotic stability
of the extrema and the convergence speed can be discussed. For
the kurtosis cost function and the one-unit algorithm, this anal-
ysis was done in [7], showing cubic convergence. For a gen-
eral cost function, the convergence speed is at least quadratic,
as shown in [8] (see also [3]). The monotonic convergence and
the speed for a general cost function for the related gradient al-
gorithm was considered in [13]. For the kurtosis cost function
and the symmetric FastICA algorithm, the cubic convergence
was proven in [14] (see also [15]). Different properties of the
one-unit version have been illustrated by computer simulations
in [16] where the accuracy is also shown to be very good in most
cases.

The second question of convergence considers the behavior
of the algorithm for a finite sample, which is the practical case.
Then, the theoretical expectations in the contrast functions are
replaced by sample averages. This results in errors in the esti-
mator for the demixing matrix. A classical measure of the error
is the asymptotic variance of the matrix elements. The goal of
designing an ICA algorithm is then to make this error as small

1053-587X/$20.00 © 2006 IEEE
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as possible. For the FastICA algorithm, such an asymptotic per-
formance analysis for a general cost function was proposed in
[17].

The Cramér—Rao lower bound (CRB) provides an algorithm
independent bound for parameter estimation. In the context of
ICA, a Cramér—Rao-like bound for intersignal interference is
derived as asymptotic variance of a maximum-likelihood esti-
mate in [24], [26]-[29], and [32]. A similar result is known for
a related problem of blind deconvolution [30].

The purpose of the present paper is to look at the performance
of the FastICA algorithm, both the one-unit and symmetric ver-
sions, in this latter sense of asymptotic error, and compare it
with the exact CRB computed from its definition. The paper is
organized as follows. In Section II, the linear ICA model and
the FastICA algorithm are described. In addition, a novel check
of saddle points of the FastICA cost function is proposed that
allows to find the global minimum of the cost function in al-
most 100% simulation runs. Finally, the following criteria to
characterize the performance of the algorithm are introduced:
a gain matrix (variance of its elements) and a signal-to-inter-
ference ratio (SIR). In Section III, analytic expressions for the
variance of the off-diagonal gain matrix elements are derived
and discussed. These expressions are asymptotically valid for
large data sets when a “good” initialization of the algorithm is
assumed. Most of the details of the analysis are deferred to Ap-
pendixes. As an example of utilization of the analysis, a novel
variant of FastICA is proposed, which combines the one-unit
algorithm and the symmetric algorithm adaptively, depending
on empirical distribution of the estimated signal components, to
improve the performance.

In Section IV, the CRB on the variance of the off-diagonal
gain matrix elements is computed via inverse of a Fisher infor-
mation matrix. Section V compares the CRB with the asymp-
totic performance of FastICA and explains nonexistence of the
CRB for signals with bounded magnitude (e.g., uniform distri-
bution) and for some long-tailed distributions.

Section VI presents a number of computer simulations using
artificial data that validate and support the theoretical analysis.
The simulations also compare the algorithmic performance with
the CRB derived in Section IV. Finally, Section VII summarizes
the results and presents the conclusions.

II. DATA MODEL AND THE METHOD

Let 5 represent a «f » ¥ data matrix, composed of «f rows,
where each row sT k' = 1,...,d contains ¥ independent re-
alizations of a random variable s;. Next assume that s has a
distribution function Fj(t) = P(sy < t). In a typical case for
ICA, the rows s{ are called the source signals, and the « random
variables s; are mutually independent.

The standard linear ICA model of a given «f x N data matrix
is

X =AS (D
where A is an unknown, nonsingular ¢ » ¢/ mixing matrix. Thus,

each row of X is a linear mixture of the unknown indepen-
dent signals s} . The goal of independent component analysis
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is to estimate the matrix A or, equivalently, the demixing ma-
trix W = A~! or, equivalently, the original source signals S.
The following are well known:
1) the separation is unique only up to an unknown scaling
and ordering of the components s7 ;
2) the separation is possible only if at most one of the orig-
inal source variables s;, has a Gaussian distribution.
Since the scale of the source signals cannot be retrieved, one can
assume, without any loss in generality, that the sample variance
of the estimated source signals is equal to one. Thus, instead of
the original source signals S8, a normalized source signal matrix
denoted U can be estimated, where

U=D"Y%8-5) )
D = diagl67,...,63 3)
67 = (sp —8,) (s — 81) /N “)
§p= (st -1n)InN/N, k=1,...,d &)

where 1 stands for /¥ x 1 vector of 1’s.

A. Preprocessing

The first step of many variants of the ICA algorithms consists
of removing the sample mean and a whitening (decorrelation
and scaling), i.e., the transformation

Z=C1(X-X) (6)

where
C=X-X)(X-X)T/~ (7)

is the sample covariance matrix, and X is the sample mean,
X = X-151% /. The output Z contains decorrelated and unit
variance data in the sense that ZZT/_-’V = T (identity matrix).
Note that Z can be rewritten using (1) and (2) as

Z = G 12ADY2U. (®)

The ICA problem can be formulated as the one to find a
demixing matrix W(Z) that separates the original signals from
the mixture Z, i.e., U = W(Z) - Z.

B. FastICA Algorithm for One Unit

The fixed-point algorithm for one-unit estimates one row
of the demixing matrix W (Z) as a vector w” that is a sta-
tionary point (minimum or maximum) of the expression
B[¢(wTZ)] € ¢(wTZ)1y/N subject to |w| = 1, where
/() is a suitable nonlinear and nonquadratic function [3]. In
the above expression, /(- ) is applied elementwise.

Finding w, proceeds iteratively. Starting with a random ini-

tial unit norm vector w, iterate

wh — Zg(Z"w) — wy' (W' Z)1y 9)

W W+/||W+|| (10)

until convergence is achieved. In (9) and also elsewhere in the
paper, in accord with the standard notation [3], g( - ) and ¢'( -)
denote the first and the second derivative of the function (- ).
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The application of ¢( - ) and ¢/( - ) to the vector wT Z is elemen-
twise. Classical widely used functions g(-) include “pow3,”
i.e., g(x) = 23 (then the algorithm performs kurtosis mini-
mization), “tanh,” i.e., g(:x) = tanh(:r), and “Gauss,” () =
rexp(—a?/2).

It is not known in advance which column of W7 (Z) is being
estimated: It largely depends on the initialization. Note that the
recursion for some components might not converge. In the defla-
tion method [9], which is not studied in this paper, this problem
is solved by separating the components from the mixture one
by one using orthogonal projections. Here, we shall assume
that each signal component can be separated from the original
signal mixture using suitable initializations. Assume that the
separating vectors w computed for all components are appro-
priately sorted [20] and summarized as rows in a matrix denoted
W1LU(Z). The rows in WU(Z) may not be mutually orthog-
onal, in general.

C. Symmetric Fastica Algorithm

The symmetric FastICA proceeds similarly, the estimation of
all independent components (or equivalently, of all rows of W)
proceeds in parallel, and each step is completed by a symmetric
orthonormalization. Starting with a random unitary matrix W,
iterate

WT — o(WZ)ZT — diagly (WZ)1y]W
W — (WHwHT)—1/2w+

1)
12)

until convergence is achieved. The stopping criterion proposed
in [14] is

1 — min(alw(ding (W Wow))) < € (13)
for a suitable constant €.

The result of the symmetric FastICA (unlike in the one-unit
algorithm without deflation) is a unitary matrix denoted
WH5YM(Z). As a consequence, sample correlations between
the separated signals are exactly equal to zero.

D. Check of Saddle Points

In general, the global convergence of the symmetric FastICA
is known to be quite good. Nevertheless, if it is run 10 000 times
from random initial demixing matrices, on the average in 1-100
cases, the algorithm gets stuck at solutions that can be recog-
nized by exceptionally low achieved SIR. The rate of these false
solutions depends on the dimension of the model, on the stop-
ping rule, and on the length of the data (see the example at the
end of this subsection).

A detailed investigation of the false solutions showed that
they contain one or more pairs of estimated components, say
(ig, 1), such that they are close to (uy + u,)/v'2 and (uy, —
uy)/+2, respectively, where (uy,uy) is the desired solution
(see Fig. 1). Due to symmetry, the saddle points of the criterion
function lie approximately halfway between two correct solu-
tions that differ in the order of two of their components. Thus,
an appropriate estimate of (uy, uy) would be (@}, t}), where

W, = (y +00)/vV2 and &) = (g — )/ V2.
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Fig. 1. Contrast function E{G(cos x(cosyp x; +sinyp-x,)+sinx - x3)}

(a) as a function of ¢ for y = 0, and (b) as a function of x for ¢ = 0, 7/4,
and 7 /2, respectively; X1, X2, X3 were generated as i.i.d. uniformly distributed
in [—/3, v/3] with the length N = 10000, and G(x) = log cosh(x). The
point [¢, x] = [7/4,0] is a saddle point of the contrast function—it is its local
minimum with regard to ¢ and a local maximum with regard to y.

A selection between given candidates (1, 0y), (01}, 01}) for a
better estimate of (uy, u,) can be done by maximizing the cri-
terion used in the very beginning of derivation of FastICA

cliig, ) = [ (6F) 1n/N = Co]*+[¢ (6F) 1 /N — )

where (/g = E[(/(£)] and ¢ is a standard normal random vari-
able. In the case of the nonlinearity “tanh,” () = log cosh(r)
and (7o = 0.37406.

Thus, we suggest to complete the plain symmetric FastICA by
the check of all (;) pairs of the estimated independent com-

ponents for a possible improvement via the saddle points. If the
test for saddle point is positive, it is suggested to perform one or
two additional iterations of the original algorithm, starting from
the improved estimate.
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TABLE 1
NUMBER OF FAILURES OF SYMMETRIC FASTICA (tanh) AMONG 10 000 TRIALS

{ N=200 | N=500 | N=1000 | N=10000 |
d=2&c=101 85 57 59 46
d=28&e=107 49 16 15 12
o = 28& stop 3x 41 4 1 2
d =2 & s.p.check 0 0 0 0
d=3&es=10"1 49 5 4 6
d=3&s=10 % 43 0 1 0
d =3 & stop 3x 45 0 v 0
d = 3& s.pcheck 0 0 0 0
d=dke=10"1 95 9 4 1 1t
d=dbe=10"" 85 2 G 5
o =4& stop 3 0 1 0 1
o =4 & s.p.check 5 0 0 0
d=5ks=107" 166 2 4 11
d=5kec=107" 151 1 2 2
d=5& stop 3x 157 1 2 0
d =5& s.pcheck 17 0 0 0

The failure rates of the plain symmetric FastiCA with three
different stopping rules and of the improved FastICA with the
check of the saddle points are compared in the following ex-
ample. The first stopping rule was (13) with ¢ = 1074, the
second stopping rule was the same with ¢ = 1075, and the
third stopping rule required the former condition to be fulfilled
in three consecutive steps. The improved algorithm used the first
stopping rule and the test of the saddle points.

These four variants of the algorithm were applied to sepa-
rate f = 2, 3, 4, and 5 independent signals with uniform dis-
tribution and varying length in 10 000 independent trials with a
randomly selected initial demixing matrix. The number of al-
gorithmic failures that are detected by the condition that SIR of
some of the separated components is smaller than 3 dB is dis-
played in Table I. The table shows zero rate of the improved al-
gorithm except for the case of the data with the shortest length,
& = 200. In the latest case, the rate of failures has significantly
dropped compared to the former three variants.

E. Measure of the Separation Quality

The separation ability of ICA algorithms can be character-
ized by the relative presence of the /rth source signal in the es-
timated «+th source signal. It is possible, if the source signals are
known. Due to the permutation and sign/phase uncertainty, the
estimated sources need to be appropriately sorted to fit the orig-
inal ones. In this paper, the method proposed in [20] is used.
Formally, the estimated source signals can be written using (8)
as

U=W(Z) Z=W(Z)C ?ADY?U

=GU (14
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where G = W(Z)C~/2AD'/2 and W(Z) stands either for
WU (Z) or for W#YM(Z). Note that G has the meaning of the
estimated demixing matrix provided that A = D = I. It will be
called the gain matrix for brevity.

The relative presence of the J:th source signal in the estimated
ith source signal is represented by the (i, /')th element of G,
denoted G . Then, the total SIR of the /th source signal is
defined as follows:

E[GE]

15)

It is important to note that the estimator U is invariant with
respect to orthogonal transformations of the decorrelated data
Z, or equivariant [10]. It is because the recursions (9) and (10)
or (11) and (12) that represent the algorithm are equivalent to the
same relations with Z, W, and W replaced by QZ, W+ Q 1,
and WQ 1, respectively, where €} is an arbitrary unitary (i.e.,
obeying QT = Q1) matrix. Then, the product

U=W.Z=WQ ' .QZ

remains independent of €}. From these facts, it follows that the
gain matrix G and consequently the SIR are independent of the
mixing matrix A.!

III. ANALYSIS

Due to the above-mentioned equivariant property of FastiCA
it can be assumed, without any loss in generality, that the recur-
sions (9) and (10) or (11) and (12) begin with the decorrelated
data of the form

Z=R"'?U (16)
where
R = %UUT. amn
The gain matrix of interest is now
G=W(Z)-R/2 (18)

Note that the gain matrix & (and consequently the SIR as well)
is a function of the normalized source signals U and of the non-
linear function g( - ) used in the algorithm only.

The main result of this section can be summarized as follows.

Proposition 1: Assume that 1) all original independent com-
ponents have zero mean and unit variance and are temporarily
white, 2) the function ¢ in algorithm FastICA is twice continu-
ously differentiable, 3) the following expectations exist:

Elseg(si)] < (19)
Bl (s1)] = pi (20)
Elg(s1)] = 4 (@29

ITo be exact, a change of the mixing matrix (or a change in the algorithm
initialization) may cause a change of the order or sign of the components at
the algorithm output. Here, however, we assume that the order and signs of the
components are post-processed to fit the original signals [20].
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TABLE I
SIR (IN DECIBELS] OF FastiCA IN ITS MAIN S1X VARIANTS FOR TWO COMPONENTS WITH THE SAME DISTRIBUTION, AND THE
CRAMER-RAO BOUND (DERIVED IN SECTION IV) FOR N = 1000. THE BEST SIR IS MARKED BY BOLD CHARACTERS

PDF SYMMETRIC ONE UNIT CRB
TANH GAUSS POW3I TANH GAUSS POW3

uniform 323 322 333 31.6 315 337 oc

sinus 347 347 351 37.5 376 395 o

bpsk 36.0 36.0 36.0 20 50 3] =
GG(d) 27.6 275 28.0 252 251 257 281
GG(3) 239 237 237 211 20.1 201 240
Laplace 29.0 29.4 24.9 27.0 274 222 31.8
GG(0.5y 333 339 249 33.6 35.0 222 o0
GG(0.1y 359 359 -3.1 47.8 50.7 -6.11 o

fork =1,...,, and 4) the FastICA algorithm (in both variants)
is started from the correct demixing matrix and stops after a
single iteration.

Then, the normalized gain matrix elements &1/ 2G1Y and
N ZG"’J” for the one-unit FastICA and for symmetric Fas-
tICA, respectively, have asymptotically Gaussian distribution
A0, VIY) and A7(0, VEYM), where

4 e — /1,2
Vil = —k (22)
. (e = pr)?
VEYY e — 13+ de— 1 + (e — pe)® (23)
(le = prl + l1e = pel)?
for i, £ =1,...,d k # £, provided that the denominators are

nonzero.
Proof: See Appendix A. An expression similar to (22) can
be found in [10] and [17], but (23) is novel.

The assumption 4 may look peculiar at the first glance, but
it is not so restrictive as it seems to be. It reflects the fact that
the presented analysis is “local” and assumes a “good” initial-
ization of the algorithm. The algorithm itself may have good
global convergence properties (see Section VI), but it is not a
subject of this proposition. Once the algorithm is started from
aninitial W that lies in a right domain of attraction, the resultant
stationary point of the recursion, denoted W, is the same and is
approximately equal to W obtained after one step from the
ideal solution, due to the fact that the convergence is quadratic.?

Our numerical simulations presented in Section VII, and also
other simulations that were skipped for lack of space, confirm
the validity of the asymptotic variances (22) and (23) for the al-
gorithm variant introduced in Section VI working with arbitrary
(random) initialization. Namely, it is shown that var[G1Y] =
(1/8M)VYY and var[GFY ™M) = (1/N)VEYM. The expressions
in (22) and (23) are functions of the probability distribution of
s and of the nonlinear function ¢( -) via the expectations in
(19)—(21). Given the distribution and the nonlinearity, these ex-
pressions can be evaluated.

2The quadratic convergence means that if the initial difference between the
initial W and W is AW, the distance of W (that is W after one iteration)
is O(| AW]P?).

Table II shows the theoretical SIR of the main six variants of
FastICA for separation of two components with the same distri-
bution, computed for a few distributions considered frequently
in the literature, for sample size & = 1000. Here, the distri-
bution “sinus” means the distribution of +/2sin(#), where # is
uniformly distributed in (0, 27), “bpsk” is the discrete distribu-
tion with values +1, both with the probability 0.5, and GG (rv)
means the generalized Gaussian distribution with parameter ¥,
described in Appendix F. Note that the latter distribution is stan-
dard Gaussian for r+ = 2, the Laplace distribution for ¢ = 1,
sub-Gaussian for ¢ 3> 2, approaching the uniform distribution
for rv — ¢, and super-Gaussian (spiky) for v — 07,

Note that for separation of ¢ > 2 components, the SIR would
be (¢f—1) %3 dB lower than in the table, and if 2V is increased/de-
creased ten times, the resultant theoretical SIR is increased/de-
creased by 10 dB compared with the table.

A. Example of Utilization

In this subsection, the previous analysis is used to de-
rive a novel variant of the FastICA algorithm, which com-
bines advantages of both previously discussed variants.
For easy reference, it will be called “Smart FastICA.”
This algorithm begins with applying symmetric FastICA
with nonlinearity “tanh.” For each estimated component
signal ﬁf, parameters ik, pr, and i, are computed as
sample estimates of the expectations in (19)—(21), namely
e = ﬁz_g(ﬁk)/f\'_., e = ]A.grg/(flk)/;’\'_., I."ilk = ]A.{r_qz(ﬁk)/;’\'_,
and then they are plugged in (22) and (23) and (15), namely

siv ) =
Zg; sz
& (HYRD) N

=k
If the obtained SIR; for the one-unit algorithm is better than
for the former estimate, the algorithm is performed, taking ad-
vantage of a more suitable nonlinearity ¢ for each of particular
cases: In the super-Gaussian case, defined by the condition yij, <
Pk, the option “Gauss” is selected, and in the sub-Gaussian case
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with i, > pr, “pow3” is applied (see the simulation section for
a reason).

Then, pk, pk, ik, and SIR; are computed again. If the new
SIR is better than the previous one and if, at the same time, the
scalar product between the former separating vector and the new
one is higher in absolute value than a constant (we have used
0.75), then the one-unit refinement is accepted in favor of the
former vector. The condition on the scalar product is intended
to eliminate the cases where the one-unit algorithm converged
to a wrong component. A further optimization of the algorithm
exceeds the scope of the paper [33].

B. Optimum Nonlinearity /

It is interesting to know, which function g( - ) would be op-
timal for given probability density function (pdf) of si. If all
source signals have the same distribution, the answer is well
known. It is the so-called score function of the distribution, de-
fined as 5(:x) = —f'(x)/f(x:), where f(x) is the underlying
pdf. Introduce the notation

SRR N G CON
w = E[*(&)] ]R ) el (24)
where ¢ is a random variable with the pdf f( - ). Note that if £ has
zero mean and variance one, it holds # = 1, where the equality
is attained if and only if the underlying distribution is standard
Gaussian (see Appendix E). Thus, # represents a measure of
non-Gaussianity.

For the optimum nonlinearity gop () = (), a straightfor-
ward computation gives ux = 1 and p = J; = #, and conse-
quently

, 1

min vV = — (25)
vy 1101

in Vi = -+ - : 26

n Vet 4 2k—1 (26)

IV. CRAMER-RAO LOWER BOUND FOR ICA

Consider a vector of parameters & being estimated from a data
vector X, having probability density fy |¢(x |#), using some un-
biased estimator 8. The CRB is the lower bound for the variance
of #. Assume that fy |¢ is smooth and the following Fisher in-
formation matrix exists:

1 dfxje(x]8) (Qﬁdx|®)T}. @7

Fo=F
TN, e 8

Then, under some mild regularity condition,[18],? it holds
cove > CRBy = F 1.

Next, if y» = 2(#) is a differentiable function of @, then the
Fisher information matrix for 4> exists as well and is equal to

Fo=J,'FeJ, (28)

31) Support of fx | ¢ is independent of 8; 2) Oy | 6(x | @)/ 8 exists for all &
from an open set; and 3) E[0f | o(x|8)/06] = 0
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where J is the Jacobian of the mapping y2(#). If the mapping is
linear, or y2(8) = W8 for some regular matrix M, then Jo =
M.

In the context of ICA, we first focus on deriving the CRB for
estimation of the demixing matrix W = A1 ie, the param-
eter vector is 8@ = vec[W].

The following assumptions will be considered throughout this
section:

E[s7] = /Rth,;(t) dt =1
ri € B [e2(s)] = fR'r.-‘:? () fi(t)dt < +x

def
i =

(29)
(30)

E [s7i:(s:)?] = LtZ-r,-":f(t)f;(t) dt < +x (31

where i = 1,. .., and +; denotes the score function of the cor-
responding pdf, i.e., 1% () = —(f/(x))/(fi(x)) - v is assumed
to have zero mean for all i, and f;(:+) > O for all 7 and .

A. Fisher Information Matrix

From the independence of the ori§inal signals, it follows that
their joint pdf is f5(8) = H?Zl [1;=; fi(sij). Then, using the
transformation X = W18

[x(X) = | det W|fs(WX). (32)

Incorporating this density into (27), the snth element of the
? x «f? Fisher information matrix Fg, where . = (i — 1)d +
J.n = (1 — 1)d 4+ v, and t; denotes the 4jth element of the
matrix W, is

F,n=E

-2 - -
[det W2 dfy dfx ] . (33)

fé(S) iy iy,

A straightforward computation (see Appendix C) gives

Fon=(N- 1)2-:{]-,;-:!1,“ + Nujuttos + P Nujitei(n — 2)
d
+ f’-'iu,jv""i Z LRTALEVS (34)
(=1, 04u

with #;, n; defined in (30) and (31), &;,, is the Kronecker’s delta,
and «;; denotes the 7jth element of the mixing matrix A. It can
be shown, using (28), that

Fo = (A DF (AT 1) (35)

where Fy stands for the Fisher information matrix derived for
acase when A = T (identity matrix); ¢ denotes the Kronecker
product. Substituting «;; = #;; into (34), it easily follows that

(F1),,, = (N = 1)%a;0,, + Nojuap

+ J\r(ﬁjiﬁyuuﬁ,l,i(ni — K — 2) + f’iuf‘-rujh'i)- (36)

Some properties of the matrix will be shown in Appendix D.

B. Accuracy of the Estimation of (o = WA

Let W denote an estimator of the demixing matrix W. Es-
timated signals S are then § = WX = WAS. It is inter-
esting to compute the CRB for the elements of the gain ma-
trix {zo = WA, which is closely related to the gain matrix =
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defined in (14). A comparison of the definition relations gives
G = G,D'/?, where D contains, on its diagonal, sample vari-
ances of the original independent signal components. Asymp-
totically, D converges to unity matrix, and hence any estimate
of (= is at the same time an estimate of {9, and vice versa.
In addition, it follows from the analysis in Appendix A that the
asymptotic distribution of nondiagonal elements of & and those
of G is the same.

To compute the CRB for (2, note that the new parameter
vector iz = vec[Go] is just a linear function of the parameter
8,ie.,0c = vecWA] = (ATI)vec|W]= (AT %I)8. Then,
using (28), the Fisher information matrix of 8¢ is

Fg = (W DFe(W' 1) =Fr. 37)

Note that F'z is independent of the mixing matrix A. The CRB
for the 45th element of G is

var((Ga)ij) = CRB((G2)ij) = (F1 i

where 1: = (i — 1)+ j and i # j. In Appendix D, it is proved
that for such

1 ko

F -t Wit a: 38
( I ) N Hikj — 1 (38)
which gives us the desired lower bound
1 K
CRB((Gs)ij) = ——2—. 39
(( 2) J) N Hik G — 1 ( )

The diagonal elements of o are not as important, they just
reflect the accuracy of estimating the power of the components,
or equivalently, the norm of rows of the demixing matrix.

V. DISCUSSION

A. Comparison of CRB With Performance of
FastICA With Optimum (!

The Cramér—Rao lower bound in (39) is compared with the
asymptotic variance of FastICA in (25) and (26) in Fig. 2. We
can see that for + close to 1, the CRB is close to the variance
of the symmetric FastICA with the optimum nonlinearity. In
this case, however, the estimation may fail, because the variance
of the estimator itself goes to infinity, and convergence of the
algorithm may be slow.

In the opposite case, for » 3 1, the CRB asymptotically
coincides with the variance of the one-unit FastICA with the
optimum nonlinearity, because

. +1U-opt R _
var |:G Kt ] N —1Vk1[U opt

1 forx — x.
CRB[G /] CRB[Gn] = F 7™

We conclude that the FastICA algorithm with the optimum non-
linearity is asymptotically efficient in two cases: 1) one-unit ver-
sion for #; 23+ 1 and 2) symmetric version for #; — 17 provided
that all components have the same distribution law.

B. Separation of Sources With the
Generalized Gaussian Distribution

Properties of the generalized Gaussian distribution are listed
for easy reference in Appendix F. Note that the score func-
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Fig. 2. Asymptotic performance of one-unit and symmetric FastICA and the
CRB versus parameter «.

tion of this distribution is proportional to |:|*~!sign(:r) so that
g(x) = |#|* Lsign(x) is the theoretically optimum nonlinearity
for the distribution. However, only for ¢x = 1 is this function
continuous and hence suitable nonlinearity for FastICA. For dis-
continuous g’s, the algorithm appears not to converge.

C. Distributions With Finite Support

The CRB does not exist (the bound is infinite) for the
bounded magnitude distributions such as “uniform,” “sinus,”
and “bpsk” in Table II. It happens because these distributions do
not have infinite support, as required for existence of the CRB.
Since the uniform distribution is a limit of the GGD(¢¥) for rv
going to infinity, it is natural to study FastICA with nonlinearity
gr(2) = |i|Fsign(x) with large k. It can be easily shown that
the one-unit FastICA with this nonlinearity has asymptotic
variance V5V (k) == 3/(2) 4 1) that goes to zero for & — x.
Similar results can be obtained for the distribution “sinus.” In
other words, the asymptotic variance of FastiCA cannot be
lower bounded by any bound of the form [3 /. Implications of
the above observation for an adaptive choice of the nonlinearity
exceed the scope of this paper.

D. Distributions With Long Tails

The CRB does not exists for the GGD(rx) distribution
with parameter ¢ < 1/2 (cf. lines 7 and 8 in Table II).
These distributions are sometimes called “long tailed”.
Instead of the score function, let us consider the nonlin-
earity go k() = wexp[—(k|x])*]. This choice has the
advantage, that the asymptotic variance of FastICA with
this nolinearity can be computed analytically. The result is
ViV (e, k) = 273/, /) =2 for large & and r¥ < 1/2, with
ilo defined in (93). Again, V;}Y (ev, ) goes to zero for & — x
and all 0 < ¢ < 1/2. This explains nonexistence of the CRB
in this case. Design of an FastICA-based algorithm tailored for
long-tailed distributions exceeds the scope of this paper.
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Fig. 3. Performance of (a) one-unit FastICA and (b) symmetric FastICA in
separating signals with distribution GG(c) as a function of c.

VI. NUMERICAL RESULTS

Example 1: Four independent random signals with gener-
alized Gaussian distribution (see Appendix C) with parameter
e and length ¥ = 5000 were generated in 100 independent
trials. The signals were mixed with a matrix that was randomly
generated in each trial, and demixed again by eight variants of
the algorithm: the symmetric FastICA with nonlinearities tanh,
Gauss, pow3, and with the score function (dependent on rx), as
well as the one-unit FastICA with the same nonlinearities, im-
plemented like smart FastICA. The resulting theoretical and em-
pirical SIR is plotted in Fig. 3(a) and (b). An erratic behavior of
the empirical results is experienced for small «x and nonlinearity
pow3. Here, the convergence of sample estimates of the expres-
sions in (19)—(21) to their expectations is slow. We can see that
among the re-independent nonlinearities, the “pow3” performs
best in the case of ¢ > 2 that corresponds to the sub-Gaussian
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Fig.4. Relative efficiency of (a) one-unit FastICA and (b) symmetric FastICA.

case, and “gauss” is the best one for rv < 2 where the distri-
bution is super-Gaussian. FastICA with ¢( - ) equal to the score
function does not work properly (does not converge at all) for
v < 1, because the score function is not continuous for these
re’s.

Fig. 4 is similar, showing the relative efficiency of the eight
methods compared with the corresponding CRB.

Example 2: In the second experiment, we have generated
three different components with Gaussian, GG(tv), and Laplace
distribution of the fixed length ¥ = 5000 in 100 independent
trials for each rt. Signals were randomly mixed and separated
by the symmetric FastICA and Smart FastICA with nonlinearity
tanh. The resultant SIRs are shown in Fig. 5. Note that this ex-
ample includes the situation where the mixture includes two
Gaussian distributions for (¢ = 2. The empirical and theoret-
ical SIR are shown to agree very well. The Smart FastICA out-
performs the symmetric version for such ¢ when the one-unit
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Fig. 5. Performance of symmetric FastiCA and smart FastICA separating
three different components using “tanh” nonlinearity.
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Fig. 6. Comparison of CRB with performance of four ICA techniques.

approach has better variance than the symmetric one, and gives
the same result otherwise.

Example 3: In the last experiment, we studied performance
of two computationally extensive algorithms that are claimed to
be more accurate than older algorithms: RADICAL [22] and
NPICA [23]. We tested implementations available on the In-
ternet and compared their performance with the CRB. The simu-
lations are obtained from 50 independent separations of a signal
of length &% = 1000 with ¢ = .3 components, all having the
same distribution function, GGD(¢v) (see Fig. 6). In the neigh-
borhood of the point rx = 2, the symmetric FastICA appears to
outperform the other techniques. In general, it appears to give
stable results unlike the NPICA.

VII. CONCLUSION

In this paper, 1) a novel technique to improve stability of Fas-
tICA is proposed, 2) novel analytical expressions are derived
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for the variance of gain matrix elements for one-unit and sym-
metric FastICA, with an arbitrary twice differentiable nonlinear
function and arbitrary probability distribution with finite vari-
ance of the independent components in the linear mixture, and
3) the Cramér—Rao bound for the above ICA problem is com-
puted. The CRB does not exist for sources with bounded magni-
tude and for sources with long-tailed distribution. It was shown
that asymptotic variance of estimates produced by FastICA with
properly selected nonlinearity can approach the CRB, if the
CRB exists, or approach zero, if the CRB does not exist. Good
general performance of this popular algorithm is confirmed and
possibilities of its further improvements are indicated.

Computer simulations confirm very well the validity of the
theoretical predictions.

APPENDIX A
PROOF OF PROPOSITION 1

A. Preliminaries

Invoking assumption (1) of the proposition, and the weak law
of large numbers it follows that the sample variance of s; de-
fined in (4) converges to 1 in probability for ¥ going to infinity,
symbolically 67 -2~ 1, or &, = 1+ 0,(1), where o, ( - ) is the
stochastic order symbol (see, e.g., Appendix C in [31]). Simi-
larly, thanks to the assumption (3)

N 78T g(si) 2 (40)
N7 T (s)1y = py. (A1)

In addition, due to the mutual independence of components, it
holds for £ # I

N7 T (sp)(se @ se) = Bl (s0)]E[s7] = pr. (42)
where ©:: denotes the elementwise product. It can be shown,
that the same limits are obtained if sy, s, in (40)—(42) are re-
placed by the normalized components uy, uy, where uy is the
Jth column of UT,J: = 1,...,. Note from (2) that u;, =

(sk —8k)/0k, 8k = Op(N~Y2), 64 = 1+ 0,(1), consequently
uy, = sk + 0p(1), g(uk) = g(sk) + 0p(1), and

uf g(ug) = [sg + 0p(1)] [g(sk) + 0p(1)]

=sTg(sk) + 0p(N) = N + 0p(N).  (43)

Similarly, it can be shown that
g T(ur)1y = Npp + 0,(N) (44)
g'T(uk)(ug i ug) = _"V/)k =+ Op(_"\'_). (45)

Moreover, using the asymptotic expression for R, to be derived
in the next subsection, it can be shown that the relations (40) and
(41) hold true as well, if s, is replaced with zg, that is defined
as the ith column of ZT, ;i =1,...,d

(46)
(47

zf_q(zk) = Npp + 0p(N)
g7 (21) 1N = Npi + 0p(N).
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B. Asymptotic Behavior of R

As NN goes to infinity, the matrix R defined in (17) approaches
identity matrix in the mean square sense. To see this, note that
the diagonal elements of R are equal to one by definition, and
that the off-diagonal elements Ry, with [: # ¥ have zero mean.
Due to assumed independence of (S, o) and (S¢, o), it holds

ulu 2 1 sTs 2
ER}|=E(-2") = SB[ 2"
[ kf] ( A A2 O'kO'[
— LE ﬁE 8657\ Sk
f\"_2 &k O'? O'k
where §, = s — 8. Let 80 = E[8,8T /57). Since all elements

of S, have the same distribution, the diagonal elements of 10
have all the same value

(43)

1 &

=1

S(n = B [s8./07]

L o rore s
= B [s/8/67] =Bl =1 (49)
forn = 1,..., N. The off-diagonal elements have all the same
value as well
-
Sr(a[r)n =E [gfnrgfn/a'[?] = ﬁ Z E [é[qggn/&?]
1 92 . 1

form,n =1,...,N. Combining (48), (49), and (50) gives

N
(f) _ o T
b N1 —I1 N 1N1 (51)
1 S S
E 2 — R k g (€) Pk k
[Rk:[] A2 {Uk 5 O_k
1 sT &1 1
=1 plssl__1
NN-1D {&k Ok } N-—-1 (52)
It follows from (52) that
def _ ,1/2
AR=R-I=0,(N ) (53)

where (J,(-) denotes a standard stochastic order symbol, or a
matrix of stochastic order symbols of appropriate dimension.
Using Lemma 1 in Appendix B, it can be derived that

1
RV/?=1- 5AR + Op(N 7). (54)
C. Approximation for Z, ¢(Z)
Obviously, U = (J,(1) and
1
Z=RYU= (1 - 5AR+ ()p(_-v—l)) U
1
=U-SARU + Op(N 7). (55)
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A Taylor series expansion of function ¢( - ) in a neighborhood
of Z = U gives

9(Z) = g(U) + ¢ (U) & AZ+ O, (N1 (56)
where - denotes the elementwise product and
AZEZ-U= —7ARU+ Op(N Y. (57)
Using (17), the /th column of AZT is
1A
Amg = = 3wl + Oy (N7, (58)
ek
D. Approximation for W, W
Inserting W = T in (11), the kfth element of W reads
+ _ [ 9lz)ze for & # ¢
Wie = { 4(z5)zr, — o' (2F )1y for ki =F# (59)
For I = £, we get using (46) and (47)
lek = N(,uk — /)k-) + Op(_"\'_). (60)

For I # ¥, we get using (56)

Wi =y (2i) 2

[9 (
_ Z:j (u?)

ul) +¢ (uf) @ Azp + Op(N Y] [ur + Az

T
uk U;;u m)

d
1 E s T
T o Ar u{ Wy Wiy (61)
25 m=1
m=£

+0O,(1).

The reminder term in (61) has the stochastic order (J,(1) for the
following reason. It holds that u;, = (J,(1), and the remainder
in the expansion of g(z1 ), thatis (J, (& 1), are N -element vec-
tors. The stochastic order notation is valid uniformly over ele-
ments of these vectors. Hence, scalar product of these two vec-
tors is (J,,(1). Similarly, Az, = (J,(N~Y2) ¢/ (u]) & Az =
Op(N=Y2) and (¢ (u]) & Azl )Aze = O,(1).

In the following, let g, and g} stand for g(uy) and ¢ (uy),
respectively, & = 1,...,d. Note that, due to (21) and due to
independence of uy, u, for i # £, it holds

E (st w)’] = E [giwu] g1] = E g4 E (weu) ) g

=B [gigr] = N (62)
It follows from (19) and (62) that

BT = N pdne + 0p(N). (63)
Similarly

ufug = Noge + 0, (NV2). (64)
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Applying (63) and (64) and (43)—(45) in (61) gives

W&:gfw QNgkukukuf
1
- 5N [ S (u{u[u[)]u[-{—() (1)

1
= f-_’;k ug — N (f-_’;k Uk) Ufuf

1
~ 9N (“kuf) g (ug @ ug) +

Op(1)
Mk + Pk 1
2

=glu, — ufuy + 0, (NV?). (65)

E. Approximation forW G

Note that if Wk+k < 0 for some /[, the /'th diagonal element
of the demixing matrices W,{g and W;jz ™ may have the wrong
sign, i.e., it might be close to —1 instead of 1. It corresponds to
reversed sign of the /'th estimated independent component. In
the one-unit version of the algorithm, the sign can be corrected
by replacing the normalization in (10) by an equivalent formula

+
_W
=% =

W,

5 W
"ﬂylL § ke +o ‘3\.‘71/2 .
ke N (,U,k _ pk) P( )

(66)

Similarly, using Lemma 2 in Appendix B, the asymptotically
equivalent sign corrected expression for the estimated demixing
matrix is

Wzgﬁign(wzk) W;_fkqign(WZ)
W]+ W
-|—Op(_'\"-71/2).

W%}M = Nge +
(67)

For both estimator variants, WV and W=Y™ we can write

AW =W —1=0,(N"/?), (68)

Since

G=WR 2= (I+AW) (1 - %AR + ()p(_-x-'*l))

1
=I+AW - AR+ O (N7 (69)
the gain matrix off-diagonal elements read
G = Wk[ uk u, + (J ( ) (70)

2’\:

For the one-unit variant, we get

N12GIU = §1/2 Wi o1 uTug + 0,(1)
_’\"_(p,k - pk) 2N1/2 k P
J\..'—l/Z
= (& we — prugue) +0,(1). (71

Mk — Pk

1199

Finally, we show that (71) can be rewritten in terms of s, s¢ in
an asymptotically equivalent formula

- U N2
NI2GL = r— (g(st)se — st se) +op(1). (72)
To see that, note that
uTu/ _ Sk — Sk T Sy — Sy _ SfS[ — 5%5(
k O ] Gr0e
sTs, — 0,1 N
=Tt (1{5 Do sfsito, . a3
p
Similarly, it can be shown that
g(uf)ue = g(si)se + 0, (N'/?). (74

Equation (74) concludes the proof of (72). Now, applying the
central limit theorem to (72) implies that the distribution of
NUY2G1LY is asymptotic normal with zero mean and variance
equal to the variance of the leading term in (72). Using (62)—(64)
gives

r ;\'_71/2
Vig = var ik — pr (4(si)se — mrsise)
N1 T T
= mvar [(g(st)se — prsise)]
i — ,uJi
== Tk (75)
(Mk - Pk)2

Similarly, for symmetric FastICA, it holds using (67) that

j\.-l/Qstk-}'ju - N 1/2W‘3Y\1 _ ulu, + op(1)

_ Wipian(u — pr) = Wiisign(ue — po)
NV2(|pr = prl + e = pel)

ufug + o0p(1). (76)

1
~ 2N1/2
The variance of the leading term in (76) results, after some al-

gebra using (63)—(65), in

Ao — w4 Ao — pd + (e — pe)?
(I = prcl + 11ee = pel)?

V‘JY Al (77)

as desired.

APPENDIX B
LEMMAS

Lemma 1: Let Ry and R be positive definite matrices of the
same dimension and AR = R — Ry. Then, for || AR|| — 0 (in
any matrix norm), it holds

R 2 =R,"*+ AM + O(|AR|?) (78)
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where
~1
AM = —unvec { [I e Ral/z + R51/2 e I]
x vec (Ry'ARR ") } . (19

Here, “vec” denotes the operation that reshapes columns of a
matrix in one long column vector, and “unvec” is the corre-
sponding inverse operation.

In the case that Ry is diagonal, R = diag(ry,...,7¢) is a
diagonal matrix with 7 > 0 for & = 1,...,d, then AM has
elements

ARy
AM;p = — . 80
M R+ V) o
In the case that Ry = I, (80) gives AM = —(1/2)AR.
Proof: The identity
I=RER %2 =Ro+AR)(R; ">+ AM)?  (81)

leads, after neglecting higher than first-order terms in AR and
AM, to the relation

AMR,? + R;/*AM = —R;'ARR;' (82
or, equivalently

[1 2Ry + Ry 1] vecAM = —vec [Rg 'ARR; ] .

The desired solution (79) follows. |
Lemma 2: Let

W=W,+ AW (83)
where Wy = diag(ny, ..., wyq) is a diagonal matrix, and let
i >> 0 for k- =1,..., ¢ Then, for | AW| — 0 it holds

S (WWT)TV2W =T+ AS+ O(|[AW]?)  (84)
where AS has elements
AW, — AW
ASy = — kT 2Tk (85)
e =+t
Proof: Using Lemma 1 gives
(WWT72 =V £ AV +O(|AW]?)  (86)
where
T\—1/2 . 1
Vo= (WoW,) =diag| —,...,— 87)
it g
and AV has as elements
T _ T
AV, - (WWT = WoW ),
g iee (g + )
W AWT - AWWT),
- (WoAW_ +AWWo )i, o aw?)
i it (e + 1)
B AW + AW e
= B Wa T AWK G AW]2).  (88)

tg g (rg 4 reg)
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Then

S=(Vo+ AV + O(|AW|?))(Wy + AW)

=T+ VAW + AVW, + O(||AW|?) (89)
and hence the leading term AS has elements
1 AW, — AW
ASp = — AW + AVjpny = —— =
e e + 1ty
u

APPENDIX C
COMPUTING FISHER INFORMATION MATRIX

Applying the fact that (&) det W) /(1) = uj; det W, we
get from (32)

i fe
Uiy,

dfs(Wx)|det W
iy,
| det W)
Yty
| det Wiy, fs(Wx) + | det W)

fs(Wx) + |(IetW|@
flyy

dfe(Wx)r)

ity

= |det Wiy, fs(Wx) + | det W)

L& T fe((WX)11)
DD S WO R

k=11=1

Next

i fr.(Wx)r)
ity

U(Wx)kl
Uty
d

= F (W) 3 Dk,

. Kl
= iy,

= [e((WX) 1) 2puitvl
d

= fr((WX) 1)k Z ok Ski-

k=1

= fr((Wx)r1)

Returning to the above formula, we get

O det W fu(Wx)

iy,
ZN zd L((Wx)ut)
’ { T (W)

From (1), it follows that s = A~ 'x = Wx, and consequently

I & filsa)
m = |(|CtW|fs(S) |:t!vu + zz fu(S“;)Hkakl .
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Using this, we can directly compute the #:+1th entry of the Fisher
information matrix.

P :E[(|(IetW|*2) i fx fo]
12 Ure'm, i,

/
f'u. U«l)
= tyutlirp + “'lp |: E E “'vkskl}

a2

N d /(S )
+ i B Zz pr trjSji
2 2 Tyon)
N N d d /
f/ (sul) fp(sp’i)
+ E -~ SkISjitloktiyg
ZZZ Ju(sut) fp(spi) HEgEok

The second and the third term are equal to —.¥ tz,,t1,-p, because

E[(fl (su))/(fu(Sut))Ski] = —fkw. To simplify the last term,
we shall consider two cases:

1) tt # p, then

N N d
Sul (SPL)
E E E E E Sk18ji | tioktirj
1=1 i=1 k=1 j=1 f“ sut) Jp(spi) |
Skudjp+orpdjubil
72 :
=N tyytirp + N tHyptiry
2) tt = p, then

v N
f{z(su ) f;(éul)
"’ Z Z Z Z L(sui) Ju(Sui) SklSjittokting

2
[— ;(sm)] SkiSqii | toktirg
fu(sui) 1951 vktrj

Il
=
Il
=
£
Il
-
~.
Il
=
S

N d
fqlz U, f’lll, ui
+ Z ZZE [fugzuj; fugzuigsklsji} tHyktirj

OpubjuX...
N 2 d
i (Sui)] 2
= ZE [— = Z E[sj,,;] thyjtirg
| fu(éui) o~~~
B[« (5 )]
2 N
+ tyutiry » E { ] + Hyutlry
Z flL SlLL 7;
=1
Ele2(.)€3]

d
E typjtiy]

21 4 (N — 1)) tyutiru

Here, ¢, denotes a random variable with pdf f,, and :, denotes
its score function, i.e., () = —(f1,(x)/ fu(x)). After a few
simplifications, (34) follows. |

APPENDIX D
COMPUTING MATRIX INVERSION OF Fy
Definition (36) can be rewritten as Fy = (& —1)2F+ N (P+
%), where sunth element of F1, P and X are ;8. 0jufi,
and @ ;8,00 (1 — #; — 2) + &0 4, Tespectively, for i =
(¢ —1)d+ jand » = (1 — 1)d + v. Note that F'; is a rank-one

matrix, F; = ee”, where e = vec(I). Applying the matrix
inversion lemma gives
_ 1 P+%)leeT(P+x)!
FI t= (P+E) .-( - )—2 7(’ ) -1
j\' _'\'(_'\' —1) +e (P+E)

To compute the inversion (P + X)L, note that ¥ is diagonal

¥ =diag(ng — 2,61, ..., K1, 62,72 — 2, k9, ..., #2, - )

d d

(90)

and P is a special permutation matrix such that Pvec(M) =
vec(MT) for any «f x ¢ matrix M. Moreover, P obeys PP =1,
and for any diagonal matrix D = diag(d) it holds that

PD=D'P

where D’ = diag(Pd) = PDP. These facts can be used to
show that the inversion of P+ X can be written in the form D, +
D, P for suitable diagonal matrices D1 and D5. The equality

(P +=)(D; + D,P) =1
is fulfilled for D4 + D}, = I and D} + £D, = 0. Hence
D,=(FE-I)7'Y and Dy=-%7'D/

where &/ =
that (Flil)mm =N
(38) easily follows.

PXP and D} = PD;P. Finally, it can be shown
YD1)mm form = (i — V) + 5,7 # j.

APPENDIX E
PROOF THAT # = 1

Assume that f is a positive probability density function
of a random variable with zero mean and variance 1, such
that » in (24) exists. Then, integration per partes and the
Cauchy—Schwartz inequality gives

- f Fla) da = — f o f () d

.' 2f {h\// f’:

= on

|/

(i) e

The equality in (91) is attained if f’/f is proportional to :r,
which necessarily means that that the distribution is Gaussian.

APPENDIX F
GENERALIZED GAUSSIAN DISTRIBUTION FAMILY

Consider the generalized Gaussian density function with pa-
rameter ¢¥, zero mean and variance one, as [19]

falr) = exp{ —(Fa|x])*}

tvid,,

20 (1/e¥) ©2)
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where ¢ > 0 is a positive parameter that controls the distribu-
tion’s exponential rate of decay, I'( - ) is the Gamma function,
and

93)

This generalized Gaussian family encompasses the ordinary
standard normal distribution for ¢ = 2, the Laplacean dis-
tribution for v = 1, and the uniform distribution in the limit
 — .

The /th absolute moment for the distribution is

= 1T (ﬂ)
Eo{|x|*} = a* fala)de = - ——2 2, 4
ity = [l e = ey o
The score function of the distribution is
ifa(x) pla=1 5 (e
) = — 02 || hl,_,:(.r.) 95)
falr) Ea[l#]9]
Then, simple computations give
O |
fa = Bale3 ()] =
{Ealfelo]y?
r(2-2)r(2) .
_ ek for ev > 1/2 (96)
+x otherwise.
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cardinal number of a set X' [9, p. 552]). This can be shown by using
the fact that by (t,) and by (. ) are independent of all other elements
of B due to Assumption 1. Hence, for every possible combination
of bx(t,) and by () it is possible to group terms corresponding to
bp,i(tn) = bi(tn) and bys ;(t,) = bys(t,) on the left-hand side of
(39) into a sub sum which is equal to the marginal distribution of that
combination. Finally, note that since by (#» ), bg/ (») € {0,1} and

itk £ &
itk =1

Pr{bi(tn) = 1.y (ta) = 1} = { Etﬁii(l — D)

the proof follows.
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Corrections to “Performance Analysis of the FastICA
Algorithm and Cramér-Rao Bounds for Linear
Independent Component Analysis”

Petr Tichavsky, Zbynék Koldovsky, and Erkki Oja

Abstract—The derivation of the Cramér—Rao bound (CRB) in [“Perfor-
mance Analysis of the FastICA Algorithm and Cramér-Rao Bounds for
Linear Independent Component Analysis,” IEEE Trans. Signal Process.,
vol. 54, no. 4, Apr. 2006, pp. 1189-1203] contains errors, which influence
the matrix form of the CRB but not the CRB on variance of relevant off-di-
agonal elements of the demixing matrix. In this correspondence, we correct
these errors.

1. THE FISHER INFORMATION MATRIX FOR ICA

The referenced paper considers a standard linear independent com-
ponent analysis (ICA) model of a given d x N data matrix

X = AS )

where A is an unknown, nonsingular d X d mixing matrix. The joint
probability density function (pdf) of the independent components is
assumed to be fs(S) = Hfl:1 Hj\:] i(8:;), where s;; is the (¢, j)th
elementof S, i =1,...,d.j=1,..., N, and f; is the pdf of s;;.

The data matrix X is obtained as a linear transformation of S, X =
WS, or equivalently, vec[X] = (In @ W™ ")vec[S], where W =
A7'. Iy denotesthe N x N identity matrix and ¢ is the Kronecker
product. Therefore, the joint pdf of the data has the form

Fx10(X 18) = | det W| f5(WX) )

where 6 is the unknown to-be-estimated vector parameter,
0 = vec[W]. The error in [1] begins with the missing exponent
N in the pdf expression above; cf. [1, eq. (32)].

A straightforward computation similar to that in Appendix C in [1]
follows that (34) in [1] should be replaced with

Fon=N (fl]'u,am, + biujiani(ni — 2) + Siuki

d
Z ajﬂaui) .
(=1,6%u
3)

Recall for completeness that F,,,, is the mnth element of the &? x d?
Fisher information matrix Fg, where m = (i — 1)d + j,n = (u —
1)d+v, a;; denotes the i jth element of the matrix A, x; "' E[¢/? (s;,)],
;' [s292(s5:;)], and v; "= — 1/ f. A comparison of (3) with (34)
in [1] shows that the correct Fisher information matrix element does
not include any term proportional to (N — 1)* but is proportional to
N.

The derivation of (3) via Appendix C in [1] can be simplified by
putting V = 1 and multiplying the resultant information matrix by N
afterwards. The information matrix must be proportional to [V, because
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the observed data are composed of N independent observations of a
random vector with the same distribution.
The computation proceeds by proving the formula

Fo= (AT 9o DF(A &) )

where Fy stands for the Fisher information matrix derived for a case
when A = T (identity matrix). Note the error in the matrix transpo-
sitions in (35) in [1] and also in (37). The latter equation should read
Fc = (W' @ I)Fs(W © 1) = Fy. A similar typo exists in [2].

For the proof of (4), it was referred to (28) in [1], but it is not accurate.
In fact, (4) was only inspired by this formula.

Substituting a,;; = &;; into (3), it easily follows that the mnth ele-
ment of Fy form = (i —1)d 4+ j andn = (u — 1)d + v reads

(F1)imn = N(8juboi + 8jidouboi(ni — i = 2) + 8iubujki). (5)

Again, there is no term proportional to (N — 1), unlike (36) in [1].
Thus, F can be written as F; = V(P +X), where P is a permutation
matrix and X is a diagonal matrix such that the mnth element of P
and X are 6, 60i, and ;40,5 [Ki + 6:;(ni — ki — 2)], respectively, for
m=(—1)d+jandn = (u—1)d + v.

To prove (4) rigorously, note that the mnth elements of A © I and
AT @Iform = (i —1)d+ jand n = (v — 1)d + v are equal to
(A D mn = ainb;y and (AT @ 1) n = aub;y, respectively. Then,
the mnth element of the product (AT © I)F1(A 2 1) is

(AT 9 DF1(A® D]y = Z (ATS ) (F1) yrnr (A @ T) .

Q)

A straightforward computation gives that the matrix element in (6) is
identical to that in (3).

Appendix D in [1] should be changed accordingly. Application of
the matrix inversion lemma is not needed, and the rest of the Appendix
and the final result in (38) are correct. Note that an alternative elegant
method of inversion of a matrix similar to F1 was used in [2].

Finally, note that one of assumptions of the Cramér-Rao inequality
is that the support of the pdf fy|o(X|#) is independent of the estimated
parameter 8. In the ICA scenario, this assumption is equivalent to the
condition that f;(x) > 0 for all 7 and finite «. In particular, the CRB is
not defined for sources with a bounded (limited) support.
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Hilbert Pair of Orthogonal Wavelet Bases:
Revisiting the Condition

David B. H. Tay, Member, IEEE

Abstract—TIt is now well known that in order to have wavelet bases that
form a Hilbert Transform pair, the corresponding low-pass conjugate
quadrature filters (CQF) should ideally be related through a half sampled
delay, i.e., e 7/, In this correspondence we revisit this condition and ex-
amine some subtleties associated with this condition that were overlooked
in previous work. We will show that there is a more general condition
where the delay can be any “even-+half”’ samples, i.e., e 72¥11/2) More
importantly we examine the implications in formulating design strategies
for Hilbert pairs and its implementation.

Index Terms—Complex wavelet, dual-tree, Hilbert pair, orthonormal
filter banks..

I. INTRODUCTION AND PRELIMINARIES

Overcomplete complex (valued) transforms that are based on the
Hilbert pairs are becoming an increasingly important signal processing
tool [1]. These complex transforms have the advantage of approximate
shift-invariance over the critically sampled real (valued) wavelet trans-
forms.

Orthogonal wavelets are usually associated or obtained from a
low-pass conjugate quadrature filter (CQF) H(z). A CQF satis-
fies H(z)H(z"') + H(—2)H(—2"") = 1. In the filter bank,
the constituent filters, denoted by Ho(z) (low-pass analysis), H;(z)
(high-pass analysis), Fo(z) (low-pass synthesis), and F’; ( z) (high-pass
synthesis), are usually obtained from a CQF filter H (=) as follows:

Hy(z)=H(z) Hi(z)= 371H(—271)
Fo(z)=H(:™Y) Fi(z)=zH(-=2). 1)

With (1), it can be verified that the aliasing function A(z) =
Ho(—z)Fo(z) + Hi(—=)F\(z) = 0 and the reconstruction function
T(z) = Ho(z)Fo(z)+ Hi(z)Fi(2) = 1, perfect reconstruction with
zero delay.

In a Hilbert pair, the two wavelets corresponding to two CQFs are
related through the Hilbert transform:

W) = {—jww) for w > 0

2
JUM(w)  forw <0 @

where " () and ¥9(w) are the Fourier transforms of " (t) and
$9(t), respectively. By denoting the corresponding CQFs by H" (%)
and H7(z) respectively, it was first shown in [2] that (2) is achieved if

H(/((fjw) _ 67'iW/2H’I(€'iwj7 lw| < 7 3)
and is known as the half sample delay condition. Further analysis on the
condition were presented in [3] and [4] using alternative formulations
which are easier to manipulate analytically. The conclusion drawn in
[3] and [4] are similar to that in [2], namely the half sample delay con-
dition is required. The most general analysis appeared in [4] where no
assumption on the relationship between the two CQFs were made and
(3) is shown to be necessary and sufficient.
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Cramér-Rao-Induced Bounds for CANDECOMP/
PARAFAC Tensor Decomposition

Petr Tichavsky, Senior Member, IEEE, Anh Huy Phan, and Zbyn¢k Koldovsky, Member, [EEE

Abstract—This paper presents a Cramér-Rao lower bound
(CRLB) on the variance of unbiased estimates of factor matrices
in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP)
decompositions of a tensor from noisy observations, (i.e., the
tensor plus a random Gaussian i.i.d. tensor). A novel expression is
derived for a bound on the mean square angular error of factors
along a selected dimension of a tensor of an arbitrary dimen-
sion. The expression needs less operations for computing the
bound, O(N R°), than the best existing state-of-the art algorithm,
O(N3R%) operations, where :V and R are the tensor order and the
tensor rank. Insightful expressions are derived for tensors of rank
1 and rank 2 of arbitrary dimension and for tensors of arbitrary
dimension and rank, where two factor matrices have orthogonal
columns.

The results can be used as a gauge of performance of different
approximate CP decomposition algorithms, prediction of their ac-
curacy, and for checking stability of a given decomposition of a
tensor (condition whether the CRLB is finite or not). A novel ex-
pression is derived for a Hessian matrix needed in popular damped
Gauss-Newton method for solving the CP decomposition of tensors
with missing elements. Beside computing the CRLB for these ten-
sors the expression may serve for design of damped Gauss-Newton
algorithm for the decomposition.

Index Terms—Canonical polyadic decomposition, Cramér-Rao
lower bound, multilinear models, stability, uniqueness.

I. INTRODUCTION

RDER-3 and higher-order data arrays need to be an-

alyzed in diverse research areas such as chemistry,
astronomy, and psychology [1]-[3]. The analyses can be done
through finding multi-linear dependencies among elements
within the arrays. The most popular model is Parallel factor
analysis (PARAFAC), also called Canonical decomposition
(CANDECOMP) or CP, which is an extension of a low rank
decomposition of matrices to higher-way arrays, usually called
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tensors. In signal processing, the tensor decompositions have
become popular for their usefulness in blind source separation
[4].

Note that a best-fitting CP decomposition may not exist for
some tensors. In that case, trying to find a best-fitting CP de-
composition results in diverging factors [5], [6]. This paper is
focussed on studying CP decompositions of a noisy observa-
tions of tensors, which admit an exact CP decomposition. The
decomposition of the noiseless tensor is taken as a ground truth
for computing errors.

An important issue is the essential uniqueness of CP decom-
position as it entails identifiability of the model (the factor ma-
trices) from the tensor. The adjective “essential” means that the
model is unique up to a scale and permutation ambiguity, which
is inherent to the problem. Initial works in the field can be traced
back in 70’s in works of Harshman [7], [8]. A popular suffi-
cient condition for the uniqueness was derived by Kruskal in
[9]. Recently, the problem has been addressed again, namely by
Stegeman, Ten Berge, De Lathauwer, Jiang, Sidiropoulos et al.;
see [10]-[24].

This paper is focussed on stability of the CP decomposition
rather than on the uniqueness. By stability we mean existence of
a finite Cramér-Rao bound in a stochastic set-up, where tensor
elements are corrupted by additive Gaussian-distributed noise.
Relation of this kind of stability to a deterministic stability and
to the uniqueness was studied in [25]. It is not true, in gen-
eral, that stability of a solution of a nonlinear problem implies
uniqueness of the solution. For example, there might always be a
permutation or sign ambiguity. It is yet an open theoretical ques-
tion if stability of the CP tensor decomposition problem implies
its essential uniqueness. Regardless of the missing link to iden-
tifiability, the stability is an interesting concept which is worth
to be studied, because different kind of noise is very common.

In general, in order to evaluate performance of a tensor de-
composition, the approximation error between the data tensor
and its approximate is sometimes used. Unfortunately, such
measure does not imply quality of the estimated components.
In practice, in some difficult scenarios such as decomposition
of tensor with linear dependency among components of factor
matrices, or large difference in magnitude between components
[26], [27], most CP algorithms explained the data tensor at
almost identical fit, but only few algorithms can accurately
retrieve the hidden components from the tensor [26], [28]. In
order to verify theoretically the quality of the estimated compo-
nents and evaluate robustness of an algorithm, an appropriate
measure is an essential prerequisite. The squared angular error
between the estimated component and its original one is such
a measure [29], [30]. Working with angular errors is practical,

1053-587X/$31.00 © 2013 IEEE
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because the scaling ambiguity does not play a role. Only the
permutation ambiguity has to be solved in practical examples,
because order of the factor can be quite arbitrary.

Cramér-Rao lower bound for CP decomposition was first
studied in [31], and later, a more compact asymptotic expres-
sion was derived in [32] for tensors of order 3 appearing in
wireless communications. A non-asymptotic (exact) CRLB-in-
duced bound (CRIB) on squared angular deviation of columns
of the factor matrices with respect to their nominal values has
been studied in [29]. Similar results for symmetric tensors
are derived in [33]. Nevertheless, the study is limited to the
case of three-way tensors. In the general case, CRIB can be,
indeed, calculated through the approximate Hessian which is
often huge, and is impractical to directly invert. Note that such
task normally costs O(R3T3) where T = 3 I,,. Seeking a
cheaper method for CRIB is a challenge to made it applicable.

This paper presents new CRIB expressions for tensors of ar-
bitrary dimension and rank, and specialized expressions for rank
1 and rank 2 tensors. The results rely on compact expressions
for Hessian of the problem derived in [28]. Alternative expres-
sions for the Hessian exist in [39]. Note, however, that unlike
[28], this paper presents different expressions for inverse of the
Hessian, which have lower computational complexity. In par-
ticular, complexity of inversion of the Hessian is reduced from
O(N3RY) operations to O( N I2¢), where N and I? are the tensor
order and the tensor rank, respectively.

On basis of new discovered properties of the CRIB, we es-
tablished connection between theoretical and practical results
in CP decomposition (CPD):

« Stability of CPD for rank-1 and rank-2 tensors of arbitrary

dimension.

* The work may serve as theoretical support for a novel CP
decomposition algorithm through tensor reshaping [34],
which was designed to decompose high-dimensional and
high-order tensors. In particular, it appears that higher-
order orthogonally constrained CPD [35]—[38] can be de-
composed efficiently through tensor unfolding.

» Stability when factor matrices occur linear dependence
problem and especially the rank-overlap problem [1],
[23], [36]. The problem is related to a variant of CPD
for linear dependent loadings which was investigated in
chemometric data and in flow injection analysis [1], [36].
A partial uniqueness condition of the related model is
discussed in [23].

* CP decomposition of tensors with missing entries, which
is quite frequent in practice, is addressed. An approximate
Hessian for this case is derived, which is the core for the
damped Gauss-Newton algorithm for the decomposition.

* A maximum tensor rank, given dimension of the tensor,
which admits a stable decomposition is discussed.

The paper is organized as follows. Section II presents the main
result, the Cramér-Rao induced bound on angular error of one
factor vector in full generality. In Section III, this result is
specialized for tensors of rank 1 and rank 2, and for the case
when two factor matrices have mutually orthogonal columns.
Section IV is devoted to a possible application of the bound:
investigation of loss of accuracy of the tensor decomposition

1987

when the tensor is reshaped to a lower-dimensional form.
Section V deals with the bound for tensors with missing en-
tries, Section VI contains examples—CRIB computed for CP
decomposition of a fluorescence tensor, stability of the tensor
investigated by Brie ef al., and a discussion of a maximum
stable rank given the tensor dimension. Section VII concludes
the paper.

II. PRESENTATION OF THE CRIB

A. Cramér-Rao Bound for CP Decomposition

Let ) be an N — way tensor of dimension /1 X Jo X ... X In.
The tensor is said to be of rank F, if R is the smallest number
of rank-one tensors which admit the decomposition of Y of the
form

al™) )

R
y= Zagﬁl) o ag) o

r=1

where o denotes the outer vector product, a( ), r=1,...,R,
n = 1,...,N are vectors of the length [,, called factors The
tensor m (1) can be characterized by N factor matrices A,, =
[(") ]ofthesmefnxl?forn =1,...,N.
Sometlmes (1) is referred to as a Kruskal form of a tensor [45].

In practice, CP decomposition of a given rank (?) is used
as an approximation of a given tensor, which can be a noisy
observation ) of the tensor ) in (1). Owing to the symmetry
of (1), we can focus on estimating the first factor matrix A,
without any loss of generality, and we can assume that all other
factor matrices have columns of unit norm. Then the “energy”
of the parallel factors is determined by the squared Euclidean
norm of columns of A ;.

It is common to assume that the noise has a zero mean
Gaussian distribution with variance o2, and is independently
added to each element of the tensor in (1).

Let a vector parameter # containing all parameters of our
model be arranged as

8 = [(vecAy)T, ..., (vecAy)"]". )
The maximum likelihood solution for # consists in minimizing
the least squares criterion

N 2
o8) = [v- )], 3

where || - || r stands for the Frobenius norm.

We wish to compute the Cramér-Rao lower bound for esti-
mating 6. In general, for this estimation problem, the CRLB is
given as the inverse of the Fisher information matrix, which is
equal to [29]

B (0) = 37(6)3(0) @)

where J(#) is the Jacobi matrix (matrix of the first-order deriva-
tives) of Q(8) with respect to 8. In other words, the Fisher infor-
mation matrix is proportional to the approximate Hessian matrix
of the criterion, H(8) = JT(8)J(8) [39].
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LetT',,,, denote the Hadamard (elementwise) product of ma-
trices Cr, = AT Ay ke {1,...,N} — {n,m},

Pnnm = @ Ck Ck = A{Ak

k#n,m

)

Theorem I [28]: The Hessian H can be decomposed into low
rank matrices under the form as

H=G +ZKZ" (6)

where K = [K,,,,,];, ,,,_; contains submatrices K,,,,, given by

Kym = (1 = 8pm)Prdvec(Tyn) @)
P is the permutation matrix of dimension B2 x R? defined in
[28] such that vecM = P gvec(MT) for any I? x R matrix M,
and 6, is the Kronecker delta, and dvec(IM) is a short-hand
notation for diag(vec(M)), i.e. a diagonal matrix containing
all elements of a matrix M on its main diagonal. Next,

G = bdiag (T, @ I;,)"" ®)

n=1

and

Z = bdiag(lp @ A,)h_, ©)
where © denotes the Kronecker product, Iy, is an identity ma-
trix of the size I, X I,,, and bdiag(-) is a block diagonal matrix
with the given blocks on its diagonal. Note that the Hessian H in
(6) is rank deficient because of the scale ambiguity of columns
of factor matrices [27], [41]. It has dimension (R, I,,) x
(Y., I,) butitsrank isatmost R I,, — (N — 1)RR.

A regular (reduced) Hessian can be obtained from H by
deleting (N — 1)I? rows and corresponding columns in H,
because the estimation of one element in the vectors a£”>,
r=1,...,R,n = 2,...,N can be skipped. The reduced
Hessian may have the form

H; = EHET (10

where

E:bdiag(IRI“IR®E2,...7IR®EN) (11)
and E,, is an (,, — 1) x I,, matrix of rank ,, — 1. For example,
one can put B, = [0, _1yx117, 1] forn = 2,..., N. With
this definition of E,,, Hg is a Hessian for estimating the first
factor matrix A; and all other vectors ag.") ,r=1,...,R,n=
2, ..., N without their first elements. In the sequel, however, we
use a different definition of E,,. Note that each E,, can be quite
arbitrary, together facilitate a regular transformation of nuisance
parameters, which does not influence CRLB of the parameter of
interest.

The CRLB for the first column of A, denoted simply as a;,
is defined as o2 times the left-upper submatrix of Hgl of the
size Il X Il,

CRLB(a;) = o® [H' (12)

]1:[1,1:11 :
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Substituting (6) in (10) gives
Hz = Gg + Z;KZ% (13)

where Gg = EGET and Zg = EZ. Inverse of Hg can be
written using a Woodbury matrix identity [40] as

H;' = G5 - G'ZuK (Iyg: + ZEGL'ZeK)  Z5GS

(14)
provided that the involved inverses exist.
Next,
GE :bdiag (Pll 29 1171‘22 54 (EgEg) seees
I'yy ® (ENEL)) (15)
G ' =bdiag ((1‘11)‘1 ©T,, Ty @ (B,ED) 1.
_ -1
NN ® (E~ER) ) : (16)
Put
U =72LG. 7, (17)
B =K(Iyp +¥K)! (18)

and let By be the upper-left R2 x R? submatrix of B, symboli-
cally By = By, g2 1.g2. Finally, let g1 and g1 . be the upper-left
element and the first row of I‘fll, respectively. Then

10,00 [Gil] 1:0,1:0

+ [GEIZE] 1:1,,1:R2
=911, +(g1,, A1) By (gl,;®A1)T .

[H']
T
1:1),1:R2

(19)

By [G3'Zg]

The CRLB represents a lower bound on the error covariance
matrix E[(&; —ay)(a; —a;)7] for any unbiased estimator of a; .
The bound is asymptotically tight in the case of Gaussian noise
and least squares estimator, which is equivalent to maximum
likelihood estimator, under the assumptions that the permutation
ambiguity has been solved out (order of the estimated factors
was selected to match the original factors) and scaling of the
estimator is in accord with the selection of the matrix E.

B. Cramér-Rao-Induced Bound for Angular Error

CRLDB(a;) considered in the previous subsection is a ma-
trix. In applications it is practical to characterize the error of the
factor a; in the decomposition by a scalar quantity. In [30] it was
proposed to characterize the error by an angle between the true
and the estimated vector, and compute a Cramér-Rao-induced
bound (CRIB) for the squared angle. The CRIB may serve a
gauge of achievable accuracy of estimation/CP decomposition.
Again, it is an asymptotically (in the sense of variance of the
noise going to zero) tight bound on the angular error between
an estimated and true factor.

The angle 1 between the true factor a; and its estimate a;
obtained through the CP decomposition is defined through its
cosine

afél

COS (¥ = ————.
T JalAl

(20)
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The Cramér-Rao induced bound for the squared angular
error of [radians®] will be denoted CRIB(a;) in the
sequel. CRIB(a;) in decibels (dB) is then defined as
—101og,,[CRIB(a;)] [dB].

Before computing CRIB(a; ) we present another interpreta-
tion of this quantity. Let the estimate a; be decomposed into a
sum of a scalar multiple of a; and a reminder, which is orthog-
onal to aj,

= fa; +ry (21
where 3 = aTa;/||a;||? and r; = &; — Bay. Then, the Distor-
tion-to-Signal Ratio (DSR) of the estimate a; can be defined as

DSR(a;) = M (22)
A lan?
A straightforward computation gives
1—cos?a
DSR(&;) = — M~ 2. (23)

cos?

The approximation in (23) is valid for small 2. We can see
that CRIB(a;) serves not only as a bound on the mean squared
angular estimation error, but also as a bound on the achievable
Distortion-to-Signal Ratio.

Theorem 2 [30]: Let CRLB(a;) be the Cramér-Rao bound
on covariance matrix of unbiased estimators of a;. Then the
Cramér-Rao-induced bound on the squared angular error be-
tween the true and estimated vector is

tr [Hal CRLBl(al)]

[[ae[|?

CRIB(a;) = (24)

where

I, =11, —asay/|las|*

(25)

is the projection operator to the orthogonal complement of a;
and tr[.] denotes trace of a matrix.

Proof: A sketch of a proof can be found in [30]. It is based
on analysis of a mean square angular error of a maximum
likelihood estimator, which is known to be asymptotically tight
(achieving the Cramér-Rao bound). Note that a conceptually
more straightforward but longer proof would be obtained
through the formula for CRLB on a transformed parameter, see
e.g., Theorem 3.4 in [44]. In particular,

ORIB(a;) = G,(a;)CRLB(a;)GT(a;) (26)
where G, (a1 ) is the Jacobi matrix of the mapping representing
the angular error as a function of the estimate a; .

Theorem 3: The CRIB(al) can be written in the form
Dgu—tr [Bo ((g1,.81,:) ©X1)]}

(]
27
where By is the submatrix of B in (18), By = B2 1.52,

CRIB(ay)

X, =C, - ——Cc"ch’ (28)

C(”)

1989

forn = 1,...,N, C") and C(”) denote the upper-right el-
ement and the first column of Cn, respectively, and ¥ in the
definition of B (18) takes, for a special choice of matrices E,,,
the form
¥ = bdiag (F;ll ®Cy, oy ® Xo,...,I'VN ® X\)
(29)
Proof: Substituting (12) and (19) into (24) gives, after
some simplifications,

CRIB(a;)
2

Ha1H2tI' [Hall (gllIh 7(gl.:®A1) Bo (gl‘:‘gAl)T)]

0.2

:W{(Ilfl)!]n
—tr [Hi (81.9A1)Byg (gl,;®A1)T] }

~Dgn
—tr [Bo ((1.81.)@ (A{ Tl A1)}

~Ta? uz @
(30)

This is (27), because

ATTIL AL =Cy — @C(DC(UT X.. (3D

Next, assume that E is defined as in (11), but E,, are arbitrary
full rank matrices of the dimension (I,, — 1) x 1,,. Then, com-
bining (17), (9), (11) and (16) gives

U =Z1G.'Zg
—bdiag (T © €, T3 © %, Tih © Xn ) (32)
where
X, = ATET(E,ET)'E,A, (33)
forn = 2,...,N. Note that the expression EZ (E,,,E,TL)—lE.,,,

is an orthogonal projection operator to the columnspace of EZ .
If E,, is chosen as the first (I,, — 1) rows of

T T T 123 2
12, =1, —a”af”" / [al" (34)

then EZ(E,ET) 'E,

AT A, =X, [

77.)

Hj(”) and consequently )N(,n, =
1

Note that the first row and the first column of X,, are zero.
Theorem 4: Assume that all elements of the matrices C,,
in (5) are nonzero. Then, the matrix Bg in Theorem 3 can be
written in the form
By = [-Ig: + V(I

+V) 1Y (35)

where
V=W-Y(I'['®C,)
N
W=Pp Zdvec(f‘ln) (F;n ®X,,)dvec(Cl @ C,) (37)

n=2

(36)
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Y=Pg Z dvec(T'y,)8; (T, 19X, )Prdvec(T1,)  (38)
n=2
S, =l — (I‘nn@X,,) dvec(Ty, @ C,)P (39)

forn =2,...,N.In(37) and (39), “©” stands for the element-
wise d1V1s10n.
Proof: See Appendix B.

Note that in place of inverting the matrix B of the size NV R? x
NR?, Theorem 4 reduces the complexity of the CRIB compu-
tation to NV inversions of the matrices of the size RZ x R2. The
Theorem can be extended to computing the inverse of the whole
Hessian in O(N R®) operations, see [48].

Finally, note that the assumption that elements of C,, must
not be zero is not too restrictive. Basically, it means that no
pair of columns in the factor matrices must be orthogonal. The
Cramér-Rao bound does not exhibit any singularity in these
cases, and is continuous function of elements of C,,. If some
element of C,, is closer to zero than say 1075, it is possible to
increase its distance from zero to that value, and the resultant
CRIB will differ from the true one only slightly.

Theorem 5: (Properties of the CRIB)

1) The CRIB in Theorems 3 and 4 depends on the factor ma-

trices A, only through the products C,, = ATA,,.

2) The CRIB is inversely proportional to the signal-to-noise
ratio (SNR) of the factor of the interest (i.e. ||a1 ||?/(¢?11))
and independent of the SNR of the other factors,
la||*/(c%,), 7 = 2,..., R.

Proof: Property 1 follows dlrectly from Theorem 3. Prop-
erty 2 is proven in Appendix C.

III. SPECIAL CASES

A. Rank 1 Tensors

In this case, the matrix X is zero, and

2 2

CRIB(ay) = =g = ”;W(h —-1).  (40)

g
— ([
Tz

In (40), g11 = 1 due to the convention that the factor matrices
A, ,n > 2, have columns of unit norm. The result (40) is in
accord with Harshman’s early results on uniqueness of rank-1
tensor decomposition [8].

B. Rank 2 Tensors

Consider the scaling convention that all factor vectors except
the first factor have unit norm. Let ¢, |¢,| < 1, be defined as

. (agn))T ag"') forn=2,...,N
") (e ) =
@1

It follows from Theorem 5 that the CRIB on aj is a function
of¢i, ..., cx multiplied by o2 /||as||?. It is symmetric function
in ¢z, ..., cy and possibly nonsymmetric in ¢q. A closed form
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expression for the CRIB in the special case is subject of the
following theorem.

Theorem 6: 1t holds for rank 2 tensors

a? 1
P 1= 1

(1—cHhd [ +2— hiz(z +1)]

CRIB(a;) = I —

TR R | @
(1—ciy—hi(z+1))" —hily+c1z)
where
N
hn = H Cn for n=1,....N (43)
2<k‘7ﬁ'n
l -
:u=—1z Ry 2) (44)
n=2 Cn —
Yo1-¢
2= a e (45)

Proof: See Appendix D.

Note that the expressions (44), (45) contain, in their denomi-
nators, terms ¢,, — Ay, c1. If any of these terms goes to zero, then
quantities y and z go to infinity. In despite of this, the whole
CRIB remain finite, because ¢ and z appear both in the numer-
ator and denominator in (42).

For example, for order-3 tensors (N = 3) we get (using e.g.,
Symbolic Matlab or Mathematica)

o? 1 3 3
[la1]]2 1—A3 h—1+ 1—c3 + 1—c2

(46)
The above result coincides with the one derived in [29]. As far
as the stability is concerned, the CRIB is finite unless either the
second or third factor have co-linear columns. Note that the fact
that the CRIB for a; does not depend on ¢; can be linked to the
uni-mode uniqueness conditions presented in [23].

For N = 4, the similar result is hardly tractable. Unlike the
case N = 3, the result depends on ¢;. A closer inspection of
the result shows that the CRIB, as a function of ¢;, achieves its
maximum at ¢; = 0, and minimum at ¢; = £1. Therefore we
shall treat these two limit cases separately. We get [(47)-(48) at
the bottom of the next page]. As far as the stability is concerned,
we can see that the CRIB is always finite unless two of the factor
matrices have co-linear columns.

Similarly, for a general N, we have for ¢; = ()

a? 1

AR

CRIBN:3 (al) =

CRIBCI:O(al) = Il -1+

C. A Case With Two Factor Matrices Having Orthogonal
Columns

This subsection presents a closed-form CRIB for a tensor of
a general order and rank, provided that two of its factor matrices
have mutually orthogonal columns. The result cannot be derived
from Theorem 5, because assumptions of the theorem are not
fulfilled.
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Theorem 7: When the factor matrices A; and A both have
mutually orthogonal columns, it holds

CORIB(a;) = || { 14.252 4 } (50)

where 7, = HQZJ( (">) al™ forr =2,...,Rk.
Proof: See Appendix E.

Theorem 7 represents an important example when a tensor
reshaping (see Section V-A. and [34] for more details) enables
very efficient (fast) CP decomposition without compromising
accuracy. It has close connection with orthogonally constrained
CPD [36], [37], [38].

IV. CRIB FOR TENSORS WITH MISSING OBSERVATIONS

It happens in some applications, that tensors to be decom-
posed via CP have missing entries (some observations are
simply missing). In this case, it is possible to treat stability of
the decomposition through the CRIB as well. The only problem
is that it is not possible to use expressions in Theorems 3-8 in
such cases.

Assume that the tensor to be studied is given by its factor ma-
trices Aq,..., A n and a 0-1 “indicator” tensor W of the same
dimension as 37, which determines which tensor elements are
available (observed). The task is to compute CRIB for columns
of the factor matrices, like in the previous sections. The CRIB
is computed through the Hessian matrix H as in (12) and (20),
but its fast inversion is no longer possible. The Hessian itself
can be computed as in its earlier definition

dvec(Y W)

H = 1%,(8)J(6), 06

Jw(8) = (s1)
where @ is the parameter of the model (2). More specific ex-
pressions for the Hessian can be derived in a straightforward

manner.

1991

Theorem 8: Consider the Hessian for tensor with mlssmg
data as an N x N partitioned matrix H = [H(" m)]

where H(»™) = [H<" "L)],,1 w1 € REDLXEL Then [see
(52) at the bottom of the page], Vx,u, denotes the mode-n
tensor-vector product between Y and u,, [4], and

yifn{u} :yilul"'

n=1m=1

Xyuy.
(53)

Xn—1Up—1 ><n+1u'n,-&-1 ot

Proof: See Appendix F.

Theorem § can be used either to compute the CRIB for ten-
sors with missing elements, or for implementing damped Gauss-
Newton method for finding the decomposition in difficult cases,
where ALS converges poorly.

V. APPLICATION AND EXAMPLES

A. Tensor Decomposition Through Reshape

Assume that the tensor to-be decomposed is of dimension
N > 4. The tensor can be reshaped to a lower dimensional
tensor, which is computationally easier to decompose, so that
the first factor matrix remains unchanged. The topic will be
better elaborated in our next paper [34], in this paper we present
only the main idea on two examples, to demonstrate usefulness
of the CRIB.

In the first example, consider N = 4. The tensor in (1) can
be reshaped to an order-3 tensor

R
Yres = Z agl) o ag‘Z) ° (35,4) & a(r3)> . (54)
r=1

Both the original and the re-shaped tensors have the same
number of elements (/1/5/514) and the same noise added to
them.

The question is, what is the accuracy of the factor matrix of
the reshaped tensor compared to the original one. The former
accuracy should be worse, because a decomposition of the re-
shaped tensor ignores structure of the third factor matrix. The

o2 1 T A+ A3 + 2l — 3533
CRIBy=4. -1 23 AT 94 T2 47
N=tei=0(a1) = |a ||21—h2 1 + 2c3c2e? — c2cd — 22 — A2 + 1 @7
H:l”z {1 hE ) for (|Cz| < 1) (|C;‘ < 1)&(‘C4| < 1)
o2 1 ¢ +a; —2e; ¢ . L
T imar | =1+ m} for leal =1
CRIBN:&Cl:il(al) = [ 2 _ 9022 for |C ‘ 1 (48)
3| =
2 1 s +e; —2cic . L
Tl T-07 fl*”%} for el = 1.
diag (Wf( n {a&”@aﬁ”, cee aﬁﬁr)(@ag‘w) forn = m,

(aﬁf’)ag’"’”) @(W;( {n.m) {aq(n

1)@agl), e a&‘“@a&“")}) , forn#m
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TABLE I
ESTIMATED CRIBS [dB] ON BEST FIT CP COMPONENTS OF FLUORESCENCE TENSOR COMPUTED FOR ASSUMED RANK R = 1,2, 3,4

=3
' I
147 LT
3T ELiE

S0

a4
Wl 3R

Wi ts 15 A

question is, by how much worse. If the difference were neg-
ligible, then it is advised to decompose the simpler tensor (of
lower dimension).

If the tensor has rank one, accuracy of both decompositions
is the same. It is obvious from (40).

Let us examine tensors of rank 2. If the original tensor has
scalar products of columns of the factor matrices ¢1, ¢2, ¢3 and
c4, the reshaped tensor has scalar products cj, ¢a2, and csca,
respectively. CRIB(a, ) of the reshaped tensor is independent
of ¢1, while CRIB of the original tensor is dependent on ¢,
so there is a difference, in general. The difference will be
smallest for ¢; = 0 (orthogonal factors) and largest for ¢; close
to £1 (nearly or completely co-linear factors along the first
dimension).

The smallest difference between CRIB(a; ) for the reshaped
tensor and for the original one is

a® [C% + kel — 2¢icicl
laall2 | (1 —2) (1 — E2)

cic2 + 32 + ciel - 3cicicl

|

(1 —c2c3c?) (232 — 3c2 — e — B+ 1)
and the largest difference is
a? {c%—&—c%ci—?c%e%cﬁ} _ o? [ 3 cicl }
Tl L= @) -G Tl [1-3 1-a7

We can see that the difference may be large if the second or
third factor matrix of the reshaped tensor has nearly co-linear
columns (¢ = 1 or ¢3¢2 ~ 1). For example, for a tensor with
I =5,¢1 =0,c3 =0.99, cs = ¢4 = 0.1 the loss of accuracy
in decomposing reshaped tensor in place of the original one is
11.22 dB. If ¢; is changed to 1, the loss is only slightly higher,
11.23 dB. If ¢; = ¢2 = 0, the loss is 0 dB for any c3, ¢4 (com-
pare Theorem 7). If ¢; = 1, co = 0 and cg = c4 = 0.99, the
loss is 8.5 dB.

Another example is a tensor of an arbitrary order and rank
considered in Theorem 7. Let this tensor be reshaped to the
order-3 tensor of the size Iy x Iz x (I5...Iy). Comparing
the CRIB(a1) of the original tensor and of the reshaped tensor
shows that these two coincide. It follows that the decomposition
based on reshaping is lossless in terms of accuracy.

B. Amino Acids Tensor

A data set consisting of five simple laboratory-made samples
of fluorescence excitation-emission (5 samples X 201 emission
wavelengths x 61 excitation wavelengths) is considered. Each
sample contains different amounts of tryptophan, tyrosine, and
phenylalanine dissolved in phosphate buffered water. The sam-
ples were measured by fluorescence on a spectrofluorometer

[
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Fig. 1. TIllustration for emission components from best-fit decompositions over
100 Monte Carlo runs for example VI-A. (a) Estimated components as R = 2.
(b) Estimated components as R = 3. (¢) Estimated components as R = 4.
(d) Estimated components as B = 8.

[43]. Hence, a CP model with R = 3 is appropriate to the fluo-
rescence data.

The tensor was factorized for several possible ranks R using
the fLM algorithm [28]. CRIBs on the extracted components
were then computed with the noise levels deduced from the error
tensor £ = ) — )>

a_Iy-Y

2
> iF
Hn I n
The resultant CRIB’s are computed for all columns of all factor

matrices and are summarized in Table 1.

Note that due to the “—101og;,” definition, high CRIB in dB
means high accuracy, and vice versa. A CRIB of 50 dB means
that the standard angular deviation (square root of mean square
angular error) of the factor is cca 0.18°; a CRIB of 20 dB cor-
responds to the standard deviation 5.7°.

The second mode to the decomposition, which represents in-
tensity of the data versus the emission wavelength, for R = 2,
3,4 and 8 is shown in Fig. 1. We can see that the CRIB allows to
distinguish between strong/significant modes of the decomposi-
tion and possibly artificial modes due to over-fitting the model.
The criterion is different in general than the plain “energy” of
the factor; if a factor has a low energy, it will probably have
high CRIB, but it might not hold true vice versa. A high energy
component might have a high CRIB.

In the next experiment, we have studied how much the ac-
curacy of the decomposition is affected in case that some data

(55)
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Fig. 2. CRIB for the second-mode components of CP decomposition of tensor in section VI.A with missing elements and mean square angular error obtained in

simulations versus percentage of the missing elements.

are missing (not available). The decomposition with the correct
rank 2 = 3 and o2 estimated as in (55) was taken as a ground
truth; the 0-1 indicator tensor WV of the same size was randomly
generated with a given percentage of missing values. The CRIB
of the second mode factors was plotted in Fig. 2 as a function
of this missing value rate. The figure also contains mean square
angular error of the components obtained in simulations. Here
an artificial Gaussian noise with zero mean and variance o2 was
added to the “ground truth” tensor. The decomposition was ob-
tained by a Levenberg-Marquardt algorithm [28] modified for
tensors with missing entries.

A few observations can be made here.

* CRIB coincides with MSAE for the percentage of the
missing entries smaller than 70%. If the percentage ex-
ceeds the threshold, CRIB becomes overly optimistic.

 In general, accuracy of the decomposition declines slowly
with the number of missing entries. If the number of
missing entries is about 20%, loss of accuracy of the
decomposition is only about 1-2 dB.

C. Stability of the Decomposition of Brie's Tensor

Brie et al. [20] presented an example of a four-way tensor
of rank 3, which arises while studying the response of bacterial
bio-sensors to different environmental agents. The tensor has
co-linear columns in three of four modes and the main message
of the paper is that its CP decomposition is still unique. In this
subsection we verify stability of the decomposition.

The factor matrices of the tensor have the form

A= [31,32783], A = [34734735]:

Az =[ag,ar,a6], Ay = [as,ay,a0].

Assume for simplicity that all factors have unit norm, ||a, | = 1,
n =1,....9. Due to Theorem 5 it holds that CRIB on a; is a
function of scalars c;; = afas, c12 = afay, c13 = ala;,
o = afa;), ¢y = aga7, cy = aSTag and [y, which is the
dimension of a;. Then, the matrices C,, = ATA,, n = 2,
3, 4, have the form

1 1 ¢ 1 ¢y 1
CQ = 1 1 [ I Cd = | C3 1 C3
¢ ¢z 1 1 e3 1
1 Cqy C4 —|
Cy =

cg 1 17.
LC4 1 1J

A straightforward usage of Theorem 4 is not possible, because
some of the involved matrices become singular. The CRIB it-
self, however, is finite and can be computed using an artificial
parameter < as a limit. The limit CRIB is computed for modified
matrices at ¢ — 0,

1 l—¢ ¢
CQE = 1—¢ 1 (o}
L C2 Co 1 ]
1 C3 1- 5_
Csc=| ¢ L e
|1—¢2 ¢ 1]
i 1 Ca C4 i
045 = Cq 1 1—=¢
Lea 1—¢ 1]

If any of the correlations ¢s, ¢3, ¢4 is zero, it is also augmented
by .

The limit CRIB can be shown to be independent of off-diag-
onal elements of C1, unless Cj is singular. Assume that C; is
regular. The result, obtained by Symbolic Matlab, is

CRIB.—y(a1)
_ o? 1
- llas || 2(:%(:%(:5 — cgcg — 32— (’:gcﬁ +1
c§ (:% + l) - 3(% +1
) - 1- (:%

(L -1 (1 - c3ed

_C% ((’:g—l—l) —-3c2+1 N 2-c2—¢c2 (56)
1—(:% 1—(:?1 ’

It follows that the decomposition is stable, unless all three fac-
tors in some mode are collinear.

D. Maximum Stable Rank

A theoretically interesting question is, what is the maximum
rank of a tensor of a given dimension which has a stable CP
decomposition (with finite CRIB). For easy reference, we shall
call it maximum stable rank and denote it Ry (11, ..., In).

An upper bound for the maximum stable rank can be de-
duced from the requirement that the number of free parameters
in the model, which is R(Z;?zl I, — N 4+ 1) in CP decompo-
sition, cannot exceed dimension of the available data, which is
Hi?:l I,,. Tt follows that

N
I'II,
R-SVVL(L’(?(II', e IJ\") S \‘ N Hn:l —J (57)
2in=1ln =N +1
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where || denotes the lower integer part of z. It can be verified
numerically that for many (and maybe all!) tensor dimensions,
an equality in (57) holds. In other words, it means that the CRIB
computed, e.g., via Theorem 4 for a CP decomposition with rank
R = R4, and some (e.g. random) factor matrices is finite. For
example, the maximum stable rank is 24, = 2 for2 x 2 x 2
tensors, and R, = 3 for 3 x 3 x 3 tensors. For order-8 tensors
of dimension 2 x ... X 2, (8x), it holds Ry,,4. = 28.

It might be interesting to compare the maximum stable rank
with the maximum rank and the maximum typical rank (to be
explained below) for given tensor dimension, if they are known
[46]. If the elements of a tensor are chosen randomly according
to a continuous probability distribution, there is not a rank which
occurs with probability 1 in general. Such rank, if exists, is
called generic. Ranks which occur with strictly positive prob-
abilities are called typical ranks. For example it was computed
in [10] that probability for a real random Gaussian tensor of the
size2 x 2 x 2tobe 2 and 3 is 7/4, and 1 — /4, respectively.
We can see that no tensor of the rank 3 and the dimension has
a stable decomposition. For tensors of the dimension 3 x 3 x 3
the typical rank is 5 [10], it is a generic rank—but no decompo-
sition of these rank-5 tensors is stable, as R0 = 3.

Next, it might be interesting to compare the maximum stable
rank with the maximum rank for unique tensor decomposition,
or prove that these two coincide. Liu and Sidiropoulos [11], [31]
derived a necessary condition for uniqueness of the CP decom-
position, which, according to a formulation in [45] reads

min rank(A;3...0A,,_10A,116...0AN) = R (58)

n=1,....N

where @ means the Khatri-Rao product. The condition (58) is
equivalent to the condition that the matrices Z,, = A; ® ... ®
A,_1 ®A,41 ©...© Ax have all full column rank, n =

1,..., N, which is further equivalent to the condition that the
product EZE” are regular forn = 1, ..., N. Finally note that
=To
2.2, =T, n=1...,N.

where I';,,, was defined in (5) and appears in computation of the
CRIB.

Unfortunately, it appears that the condition (58) is only nec-
essary, but not sufficient for uniqueness. It is often fulfilled for
R higher than R.,,.... Thus a relation between the stability and
uniqueness of the CP decomposition remains open question for
now.

VI. CONCLUSIONS

Cramér-Rao bounds for CP tensor decomposition represent
an important tool for studying accuracy and stability of the
decomposition. The bounds derived in this manuscript serve
as a theoretical support for a method of the decomposition
through tensor reshaping [34]. As a side result, a novel method
of inverting Hessian matrix, which is more computationally
efficient, is derived for the problem. It enables a further im-
provement of speed of the fast Gauss-Newton for the problem

'We do not have yet a formal proof that the equality in (57) holds for all tensor
dimensions and orders.
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[28], [48]. A novel expression for Hessian for CP decompo-
sition of tensor with missing entries has been derived. It can
serve for assessing accuracy of CP decomposition of these
tensors without need of long Monte Carlo simulations, and
for implementing a damped Gauss-Newton algorithm for CP
decomposition of these tensors.

A direct link between stability and essential uniqueness re-
mains to be an open theoretical question. In particular, it is not
known yet for sure if stability implies the essential uniqueness.

CRB expressions similar to the ones derived in this paper can
be also derived for other important special tensor decomposition
models such as INDSCAL (where two or more factor matrices
coincide) [16], [39], or for the PARALIND model, where the
factor matrices have certain structure [23], and for block factor-
ization methods.

APPENDIX A

Matrix Inversion Lemma (Woodbury identity): Let A, X,Y,
and R are matrices of compatible dimensions such that the fol-
lowing products and inverses exist. Then

(A+XRY) '=A' - A X(R P4+ YA IX)ryA L
(59)

APPENDIX B
Proof of Theorem 4: Let the matrices K and ¥ in (18) be

partitioned as
Kl} o {\Ifl 0 }

0
K_{Kf K, 0 0, (60)

where the left-upper blocks have the size R? x R?. Then, using a
formula for inverse of partitioned matrices, the left-upper block
of B in (18) can be written as

~1
By =K; (Iin_1)ae + ¥2Ko — B.K{ ¥, K, ) ~ W.KT
SKK; 'U,KT. (61)

A key observation which enables a fast inversion of the term K3
is that

K = K, + DFD” (62)
where
9 N
Ko = — bdiag (PRF (dvec(1 @ Cp)) ) .6
N
F=Pp H dvec(C,,) = Prdvec(I'11®C1) (64)
n=1
D= [dvec(l@Cl),...,dvec(l@CN)]T. (65)
Similarly,
K> = Ko2 + D:FD} (66)
where
NV
Ko = — bdiag (PRF (dvec(1 ® C,,)) ) , 6D
D, = [dvec(1® Cy),...,dvec(1 0 Cy)]T.  (68)



90

TICHAVSKY et al.: CANDECOMP/PARAFAC TENSOR DECOMPOSITION

Then the matrix K3 in (61) can be written as
K3 :I(l\"—l)l?z + ‘I’QKZ - ‘I’QK{‘I’lKl
=In_1yre + ¥ (Koz — KT 1K) + U,D,FDj
=Q + ¥,D,FD? (69)

where

Q =bdiag(Qu),,
Q'n - IR2 - (P;i ® Xn) PR
X (F (dvec(1 @ C,L))2

(70)

tavec(T'1,) (I‘{f ® cl) dvec(I‘ln)PR) ()

Now, K3 can be easily inverted using the matrix inversion
lemma (59),

Kg—l — Q71
—1 _
-Q'Df (I + DIQ ', D,F)  T,D,FQ L. (72)

Inserting (72) in (61) gives, after some simplifications, the result
(35). [ ]

APPENDIX C

Proof of Theorem 5: Consider the change of scale of
columns of factor matrices up to their first columns. As in
Section II assume that the scale change is realized in Aj,
while the other factor matrices have columns of unit norm. The
theorem claims that the substitution A; — A;D into (27)
where D = diag(1, As, ..., Ag), A, 7 0, has no influence on
CRIB(ay).

The substitution A; «— A;D leads to C; «— DC;D and
X, « DX;D while C,, and X,,, 7 = 2,..., N, remain the

same. Consequently, I'y,,, n = 1,..., N, remain unchanged

while I',,,, « DI',,,D forn = 2,..., N. Now, we can sub-
stitute into (35) assuming that the condition of Theorem 4 is
satisfied.

Let S,, denote the matrix S, in (39) after the substitution
A; «— A;D.Itcanbe shown that (D ®Ig)S,, =S, (D®Ig)
using the rules

(DL,D) ' 2 X, = (D' 2 1) (T, © X,
x (D' @1Ig) (73)
dvec(DI',,D © C,,) =(D ® D)dvec(T,, @ C,) (74)
(IR®D)PR IPR(D®IR) (75)

and the fact that diagonal matrices commute. Using the same
rules in further substitutions, after some computations, the in-
dependence of CRIB(a;) on D follows.

APPENDIX D

Proof of Theorem 6: Again, assume for simplicity that all
factors have unit norms. It holds

(1w _Jo o N
F11_|:h1 l:| Xn—|:0 l—(ﬁ%:|7 ﬂ_lN

1995
and
g1 = [I"l] _ (76)
g1 = (411 =
1 1-h?
g1,: 2911[1a —hl]- a7

The matrix ¥ in (32) can be decomposed as ¥ = J® where

J =bdiag (I, L® [0, 1]7,... L ® [0,1]") (78)
® =bdiag (Pfll ®Cy, (1-¢3) Ty ®[0,1].....
(1- &) Tk @ [0.1]). (79)

Then the matrix B in (18) can be rewritten using the Woodbury
identity (59) as
B =K(I,x +J®K)*

=K - KJ(TIon 2 + ®KJ) 1 OK. (80)

Now, put By = Inn o + ®KJ and write it in the block form as

B42]
By

By

B, =Iinio + PKI = {B (81)
43

where By; has the size 4 x 4. The bottom-right block B4y of
dimension (2N — 2) x (2N — 2) is easy to be inverted using
the Woodbury identity again, because it can be written as

By = By +sf7 (82)
where
B5 :bdiag(B52, ey BSN) (83)
1 )
Bs. = 2o n=2,...,N (84)
_ haci (1 - Cé) (1 — (’5)
5= 1—h3c2 "1—h332
haer (1= 3, 1— 2
_ \(1( . ;m>’( (27\)2 (85)
1 — hicf 1 - hieq
f=[0, 1, 0, 1, 1]7. (86)
After some computations, we receive the result (42). ]

APPENDIX E

Proof of Theorem 7: Under the assumption of the Theorem,
it holds that the matrix C; = AT A; is diagonal and Cy = Iy
(identity matrix). Thanks to Theorem 5 we can assume, without
any loss of generality, that C; = Ig as well. It can be shown
for I,,,, in (5) that I,,,,, = Ip for all pairs (m,n), (m,n) #
(1,2).(2,1). Only I'y3 and I'y; = T'15 are possibly different.
Note that the first row of I'19 is (1,72, . .., v ).

It follows from these observations that all non-diagonal 122 x
R? blocks K, of K in (6) with (m,n) # (1,2),(2.1) are
identical, diagonal, having 1 at positions (p,p), p = 1,1% +
1,2R +2,..., R? and 0 elsewhere. In other words, these K.,
can be written as K,,,,, = QQT, where Q is a 0-1 matrix of the
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size R? x R, the p-th column of Q has the value 1 at position
(p—1)(12 4+ 1) + 1 and 0 elsewhere.

Computation of the CRIB can proceed from equation (61) by
inserting the special form of the blocks of K; and K and using
the Woodbury identity (59). u

APPENDIX F

Proof of Theorem 8: The following identities are used in this
proof

vec{A®B) = dvee(B)vec(A), (87)
a”diag(b)c = (a®c)Tb, (88)
{a®b)@Ec®d) =(a@®c) ® (b®d). (89)

Here, dimensions of a, b, ¢ and d are assumed to match
accordingly.
The approximate Hessian in (51) is given by

H =3, (0)Jw(8) = J(6)" dvec(W)I(8),  (90)
where J(8) is the Jacobian for the complete data.
We have
Ovecy N n—1
S = @ Al sea (@) on
a, k=n-+1 k=1
where unit vector eﬁ") fori=1,2,...,1, is the i-th column of

the identity matrix of size I,, x I,,.
An (i, ) entry of a sub matrix H",™ fori = 1,2,...,1I,,
and j = 1,2,..., 1, is given by

HE (1) = [ 29V dvecqw) | 290
Ba,,(::’) 6a](:’)
N
= ® ad®al®) ®(e§")®e§."))
k=n+1

T

n—1
® ®a$k)®agk) veeW  (92)
k=1

= WX _,{b®1%,6,e™ (93)

where &;; is the Kronecker delta, b = al™ @ag"), forn =
1,...,N. This leads to that a diagonal sub-matrix HE'Z ) is a
diagonal matrix as in Theorem IV.

For off-diagonal sub matrices Hff;"n) of size I, X (1 <
n < m < N), we have

e () = [ 2O} dveoow [ 29
' da;” dajy
N
= ® as,k) @agk)
k=m-+1
m—1

5 (2 @) o [ ® a @al

k=n-+1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 8, APRIL 15, 2013

@ (el @al)

n—1 T
® al® ®al®) vec(W) 94)
k=1
—alal (w;,{m} {b<k>}
%l xmel™ ) . (95)
This leads to the compact form in Theorem 8. |
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