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1 The motion of viscous fluids around a purely ro-

tating body

In the first part of the thesis we shall study the time-periodic Oseen equations past a
purely rotating body in the whole space and in an exterior domain.

Let Ω̃(t) ⊂ Rn (n = 2, 3) be given, the time-dependent exterior domain past a rotating

body D. We consider that ∂Ω̃ is sufficiently smooth. We assume that Ω̃(t) is filled with
a viscous incompressible fluid modelled by the Navier-Stokes equations with the velocity
v∞ at infinity. Given the coefficient of viscosity ν > 0 and an external force f̃ = f̃(y, t),
we are looking for the velocity ṽ := ṽ(y, t) and the pressure q̃ := q̃(y, t) solving the
nonlinear system

ṽt − ν∆ṽ + (ṽ · ∇)ṽ +∇q̃ = f̃ in Ω̃(t), t > 0,

div ṽ = 0 in Ω̃(t), t > 0,

ṽ(y, t) = ω ∧ y on ∂Ω̃(t), t > 0,

ṽ(y, t) → v∞ as |y| → ∞ .

(1.1)

Here ∧ denotes the exterior wegde product of R3, and in the two-dimensional case,
ω ∧ y = (−y2, y1) for y = (y1, y2).

Due to the rotation of the body with the angular velocity ω, we have

Ω̃(t) = Oω(t)Ω,

where D ⊂ Rn is a fixed exterior domain and Oω(t) denotes the orthogonal matrix

Oω(t) =

cos |ω|t − sin |ω|t 0
sin |ω|t cos |ω|t 0

0 0 1

 or =

(
cos |ω|t − sin |ω|t
sin |ω|t cos |ω|t

)
if n = 2. (1.2)

After the change of variables x := Oω(t)Ty and passing to the new functions u(x, t) :=
OT

ω ṽ(y, t)−v∞ and p(x, t) := q̃(y, t), as well as to the force term f(x, t) := Oω(t)T f̃(y, t),
we arrive at the modified Navier–Stokes system

ut − ν∆u+ (u · ∇)u− ((ω ∧ x) · ∇)u+

+(Oω(t)Tv∞ · ∇)u+ ω ∧ u+∇p = f in Ω, t > 0,

div u = 0 in Ω, t > 0,

u(x, t) +Oω(t)Tv∞ = ω ∧ x on ∂Ω, t > 0,

u(x, t) → 0 as |x| → ∞ .

(1.3)

Note that, because of the new coordinate system attached to the rotating body, equa-
tion (1.3)1 contains three new terms, the classical Coriolis force term ω ∧ u (up to a
multiplicative constant) and the terms ((ω ∧ x) · ∇)u and (Oω(t)Tv∞ · ∇)u which are
not subordinate to the Laplacian in unbounded domains.

An important step concerns its linearized and steady versions, i.e.
• either in the whole space Rn the modified Stokes systems,
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−ν∆u− ((ω ∧ x) · ∇)u+ ω ∧ u+∇p = f in Rn,

div u = 0 or g in Rn,

u→ 0 as |x| → ∞,

(1.4)

where n = 2 or n = 3;
• or in an open set Ω the modified Oseen systems,

−ν∆u+ k∂3u− ((ω ∧ x) · ∇)u+ ω ∧ u+∇p = f in Ω,

div u = 0 or g in Ω,

u(., t) + u∞ = ω ∧ x on ∂Ω,

u→ 0 as |x| → ∞,

(1.5)

with an appropriate choice of the constant translational velocity at infinity u∞ = ke3 6=
0, therefore parallel to ω.

We follow two different ways to handle this problem. The first approach in an L2-
setting uses variational calculus. This viewpoint has already been applied in [23] by R.
Farwig and in [58, 59] by S. Kračmar and P. Penel to solve the scalar model equations

−ν∆u+ k∂3u = f in Ω

and – with a given non-constant and, in general, non-solenoidal vector function a –

−ν∆u+ k∂3u− a · ∇u = f in Ω,

respectively, in an exterior domain Ω, together with the boundary conditions u = 0 on
∂Ω and u→ 0 as |x| → ∞.

Second, to consider more general weights in Lq-spaces, we apply weighted multiplier
and Littlewood-Paley theory as well as the theory of one-sided Muckenhoupt weights
corresponding to one-sided maximal functions. This approach was firstly introduced by
Farwig, Hishida, Müller [27] for the case u∞ = 0 and in [24], [25] when u∞ 6= 0 without
weights and then extended to the weighed case by Krbec, Farwig, Nečasová [31], [30]
and Nečasová, Schumacher [68].

1.1 Lq setting

Definition 1. Let Aq, 1 < q < ∞, the set of Muckenhoupt weights, be given by all
strictly positive functions w ∈ L1

loc(R
n), for which

Aq(w) := sup
Q

(
|Q|−1w(Q)

) (
|Q|−1w′(Q)

)q−1
<∞. (1.6)

where w′ := w− 1
q−1 and the supremum is taken over all cubes Q in Rn. We have excluded

the case where w vanishes almost everywhere.

For q ∈ (1,∞), w ∈ Aq, k ≥ 1 ∈ N, and an open set Ω, we define

3



• the Lebesgue space Lq
w(Ω) :=

{
f ∈ L1

loc(Ω) s.t.
∫

Ω
|f |qw dx <∞

}
, with the norm

‖f‖q,w :=
(∫

Ω
|f |qw dx

) 1
q ,

• the Sobolev space Hk,q
w (Ω) := {f ∈ L1

loc(Ω) s.t. ∇jf ∈ Lq
w(Ω), j ≤ k}, equipped

with the norm ‖u‖k,q,w :=
∑k

j=0 ‖∇ju‖q,w,

• the homogeneous Sobolev space Ĥk,q
w (Ω) := {f ∈ L1

loc(Ω) s.t. ∇kf ∈ Lq
w(Ω)},

• the space of smooth and compactly supported functions C∞
0 (Ω) and its divergence

free counterpart C∞
0,σ(Ω) := {φ ∈ C∞

0 (Ω) s.t. div φ = 0},

• and the spaces Ĥk,q
w,0(Ω) := C∞

0 (Ω)
‖·‖

bH
k,q
w , Hk,q

w,0(Ω) := C∞
0 (Ω)

‖·‖
H

k,q
w .

It is easily seen that

(Lq
w(Ω))′ = Lq′

w′(Ω) with
1

q
+

1

q′
= 1 and w′ = w− 1

q−1 . (1.7)

Moreover, by [74], for 1 < q < ∞ and w ∈ Aq there exists s such that 1 ≤ s < q and
w ∈ As. In addition, if Ω is a bounded domain, then it follows from Hölder’s inequality
that the weighted Lebesgue spaces are embedded into unweighted ones as follows

Lq
w(Ω) ↪→ Lr(Ω) for every r < q/s. (1.8)

Considering the dual spaces in (1.8) one obtains that for q and w as above there exists
r ∈ (1,∞) such that Lr(Ω) ↪→ Lq

w(Ω).

1.1.1 Strong solution

Oseen system see [30]

The Oseen system (1.5) has been analyzed by Farwig in [24], [25], in Lq-spaces, 1 <
q < ∞, the a priori estimates being generalized by Farwig, Krbec, and Nečasová in
weighted Lq-spaces

‖ν∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w, (1.9)

‖k∂3u‖q,w + ‖(ω ∧ x) · u− ω ∧ u‖q,w ≤ c(k, ν, ω)‖f‖q,w. (1.10)

More precisely,

Theorem 1. Let the weight function 0 ≤ w ∈ L1
loc(R

3) be independent of the angular
variable θ and satisfy the following condition depending on q ∈ (1,∞):

2 ≤ q <∞ : wτ ∈ Ã−
τq/2 for some τ ∈ [1,∞)

1 < q < 2 : wτ ∈ Ã−
τq/2 for some τ ∈

(
2
q
, 2

2−q

]
.

(1.11)
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(i) Given f ∈ Lq
w(R3)3 there exists a solution (u, p) ∈ L1

loc(R
3)3 × L1

loc(R
3) of (1.5)

satisfying the estimate
‖ν∇2u‖q,w + ‖∇p‖q,w ≤ c‖f‖q,w (1.12)

with a constant c = c(q, w) > 0 independent of ν, k and ω.
(ii) Let f ∈ Lq1

w1
(R3)3 ∩ Lq2

w2
(R3)3 such that both (q1, w1) and (q2, w2) satisfy the con-

ditions (1.11), and let u1, u2 ∈ L1
loc(R

3)3 together with corresponding pressure functions
p1, p2 ∈ L1

loc(R
3) be solutions of (1.5) satisfying (1.12) for (q1, w1) and (q2, w2), respec-

tively. Then there are α, β ∈ R such that u1 coincides with u2 up to an affine linear
field αe3 + βω ∧ x, α, β ∈ R.

Remark 1. Precise definition of Ã−
τq/2 is given in [30].

Corollary 1. Let the weight function 0 ≤ w ∈ L1
loc(R

3) be independent of the angular
variable θ. Moreover, let w satisfy the following condition depending on q ∈ (1,∞):

2 ≤ q <∞ : wτ ∈ Ã−
τq/2(J ) for some τ ∈ [1,∞)

1 < q < 2 : wτ ∈ Ã−
τq/2(J ) for some τ ∈

(
2
q
, 2

2−q

] (1.13)

where the weight class Ã−
τ (J ), 1 ≤ τ <∞, is defined by

Ã−
τ (J ) = Ã−

τ (R3) ∩ Aτ (J ).

Given f ∈ Lq
w(R3)3 there exists a solution (u, p) ∈ L1

loc(R
3)3 × L1

loc(R
3) of (1.5)

satisfying the estimate

‖k∂3u‖q,w + ‖(ω ∧ x) · u− ω ∧ u‖q,w ≤ c

(
1 +

k5

ν5/2|ω|5/2

)
‖f‖q,w (1.14)

with a constant c = c(q, w) > 0 independent of ν, k and ω.

We note that the ω-dependent term 1+ k5

ν5/2|ω|5/2 in (1.14) cannot be avoided in general;

see [25] for an example in the space L2(R3).
As an example of anisotropic weight functions we consider

w(x) = ηα
β (x) = (1 + |x|)α(1 + s(x))β, s(x) = |(x1, x2, x3)| − x3, (1.15)

introduced in [23] to analyze the Oseen equations.

Corollary 2. The a priori estimates (1.12),(1.14) hold for the anisotropic weights w =
ηα

β , see (1.15), provided that

2 ≤ q <∞ : − q
2
< α < q

2
, 0 ≤ β < q

2
and α+ β > −1,

1 < q < 2 : − q
2
< α < q − 1, 0 ≤ β < q − 1 and α+ β > − q

2
.

Note that the condition β ≥ 0 will reflect the existence of a wake region in the
downstream direction x3 > 0, where the solution of the original nonlinear problem (1.1)
will decay slower than in the upstream direction x3 < 0.
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1.1.2 Weak solution

Whole space R3, see [56]

We introduce the following notations. The class C∞
0 (R3) consists of C∞ functions with

compact supports contained in R3. By Lq(R3) we denote the usual Lebesgue space with
norm ‖ · ‖q. We define the homogeneous Sobolev spaces

Ŵ 1,q(R3) = C∞
0 (R3)

‖∇·‖q
= {v ∈ Lq

loc(R
3); ∇v ∈ Lq(R3)3}/R. (1.16)

Definition 2. Let 1 < q < ∞. Given f ∈ Ŵ−1,q(R3)3, we call {u, p} ∈ Ŵ 1,q(R3)3 ×
Lq(R3) weak solution to (1.5) if

(1) ∇ · u = 0 in Lq(R3), (1.17)

(2) (ω ∧ x) · ∇u− ω ∧ u ∈ Ŵ−1,q(R3)3,

{u, p} satisfies (1.5)1 in the sense of distributions, that is

ν〈∇u,∇ϕ〉 − 〈(ω ∧ x) · ∇u− ω ∧ u, ϕ〉
+k

〈
∂u
∂x3
, ϕ

〉
− 〈p,∇ · ϕ〉 = 〈f, ϕ〉,

ϕ ∈ C∞
0 (R3)3.

(1.18)

The main results are the following

Theorem 2. Let 1 < q <∞ and suppose f ∈ Ŵ−1,q(R3)3. Then problem (1.5) possesses

a weak solution (u, p) ∈ Ŵ 1,q(R3)3 × Lq(R3) satisfying the estimate

‖∇u‖q + ‖p‖q + ‖(ω ∧ x) · ∇u− ω ∧ u‖−1,q + ‖∂3u‖−1.q ≤ C‖f‖−1,q, (1.19)

with some C > 0, which depends on q.

Theorem 3. The solution {u, p} given by Theorem 2 is unique up to a constant multiple
of ω for u.

1.2 L2 setting

Whole space see [57]
We will introduce notation used in this subsection:
Let (L2(Ω; w))

3
be the set of measurable vector functions f = (f1, f2, f3) in Ω such that

‖f‖2
2,Ω; w =

∫
Ω

|f |2w dx <∞.

We will use the notation L2
α,β (Ω) instead of

(
L2

(
Ω; ηα

β

))3
and ‖ · ‖2,α,β instead of ‖ · ‖

(L2(Ω; ηα
β ))

3 .

Let us define the weighted Sobolev space H1
(
Ω; ηα0

β0
, ηα1

β1

)
as the set of functions u ∈
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L2
α0,β0

(Ω) with weak derivatives ∂iu ∈ L2
α1,β1

(Ω), i = 1, 2, 3. The standard norm of

u ∈ H1
(
Ω; ηα0

β0
, ηα1

β1

)
is given by

‖u‖
H1

(
Ω; η

α0
β0

,η
α1
β1

) =

(∫
Ω

|u|2 ηα0
β0
dx +

∫
Ω

|∇u|2 ηα1
β1
dx

)1/2

.

As usual,
◦
H1

(
Ω; ηα0

β0
, ηα1

β1

)
will be the closure of C∞

0 (Ω) in H1
(
Ω; ηα0

β0
, ηα1

β1

)
, where

C∞
0 (Ω) is (C∞

0 (Ω))3 .
For simplicity, we shall use the following abbreviations:

L2
α,β (Ω) instead of

(
L2

(
Ω; ηα

β

))3 ‖ · ‖2,α,β instead of ‖ · ‖
(L2(Ω; ηα

β ))
3 ,

◦
H1

α, β (Ω) instead

of
◦
H1

(
Ω; ηα−1

β−1 , η
α
β

)
, Vα,β (Ω) instead of

◦
H1

(
Ω; ηα−1

β , ηα
β

)
.

We shall use these last two Hilbert spaces for α ≥ 0, β > 0, α+ β < 3.
We will consider the nohomogeneous case div u = g.

Theorem 4. (Existence and uniqueness) Let 0 < β ≤ 1, 0 ≤ α < y1β with y1 will be
given in see [57]. Moreover, let f ∈ L2

α+1,β, g ∈ W 1,2
0 with supp g = K ⊂⊂ R3, and∫

R3 g dx = 0. Then there exists a unique weak solution {u, p} of the problem (1.5) such
that u ∈ Vα,β, p ∈ L2

α,β−1, ∇p ∈ L2
α+1,β and

‖u‖2,α−1,β + ‖∇u‖2,α,β + ‖p‖2,α,β−1 + ‖∇p‖2,α+1,β ≤ C
(
‖f‖2,α+1,β + ‖g‖1,2

)
.

An exterior domain see [57]

Theorem 5. Let Ω ⊂ R3 be an exterior domain and 0 < β ≤ 1, 0 ≤ α < y1 · β; y1 is
given see [57] , f ∈ L2

α+1,β (Ω) , g ∈ W 1,2
0 (Ω) , with supp g = K ⊂⊂ Ω and

∫
Ω
g dx = 0.

Then there exists a weak solution {u, p} of the problem (1.5) such that u ∈ Vα,β

(
Ω

)
,

p ∈ L2
α,β−1 (Ω) , ∇p ∈ L2

α+1,β (Ω), and

‖u‖2,α−1,β + ‖∇u‖2,α,β + ‖p‖2,α,β−1 + ‖∇p‖2,α+1,β ≤ C
(
‖f‖2,α+1,β + ‖g‖1,2

)
.

2 Asymptotic behavior of the motion of viscous fluid

around a translating and rotating body

For more details see [17].

We consider a stationary linearized variant of (1.3) given by

−∆u− (U + ω × x) · ∇u+ ω × u+∇π = f, divu = 0 in Ω, (2.1)

under the assumption that U and ω are parallel. We derive a representation formula for
the velocity part u of a solution (u, π) to (2.1). This formula is based on a fundamental
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solution to (2.1) proposed by Guenther and Thomann in the article [45] where they
construct the fundamental solution to a linearized version of the time-dependent problem
(1.3). On [45, page 20], they indicate that by integrating this solution with respect to
time on (0,∞), a fundamental solution to (2.1) is obtained. Using our representation
formula we prove the asymptotic behavior of the solution.

The result was motivated by references [42, 43], where the linear stationary problem
(2.1) as well as the nonlinear stationary variant of (1.3),

−∆u− (U + ω × x) · ∇u+ ω × u+ (u · ∇)u+∇π = f, divu = 0 (2.2)

in Ω = R3\D

are considered. It is shown in [42] under suitable assumptions on the data, and in the
case of (2.2) additionally under some smallness conditions, that solutions to respectively
(2.1) and (2.2) exist in certain Sobolev spaces. These solutions are unique in the space
of functions (v, %) satisfying relation

sup{|v(x)| · |x| : x ∈ R3\BS} <∞ for some S > 0 with D ⊂ BS.

Article [43] further shows that under additional assumptions on the data, and after some
change of variables, the solutions (u, π) constructed in [42] verify relations

sup{|u(x)| · |x| ·
(
1 +Re · (|x|+ x1)

)
: x ∈ R3\BS} <∞, (2.3)

sup{|∇u(x)| · |x|3/2 ·
(
1 +Re · (|x|+ x1)

)3/2
: x ∈ R3\BS} <∞.

2.1 Notations, definitions and auxiliary results.

If x, y ∈ R3, we write x × y for the usual vector product of x and y. The open ball
centered at x ∈ R3 and with radius r > 0 is denoted by Br(x). If x = 0, we will write
Br instead of Br(0). The symbol | · | will be used to denote the Euclidean norm of R3,
and it will also stand for the length α1 + α2 + α3 of a multiindex α ∈ N3

0.
We fix vectors U, ω ∈ R3\{0} which are parallel: U = % · ω for some % ∈ R\{0}. By

the symbol C, we denote constants depending only on U and ω. We write C(γ1, ..., γn)
for constants which additionally depend on quantities γ1, ..., γn ∈ R, for some n ∈ N.
We further fix an open bounded set D in R3 with Lipschitz boundary ∂D, the outward

unit normal to D is denoted by n(D). For T ∈ (0,∞), put DT := BT\D (”truncated
exterior domain”).

Define the matrix Σ by

Σ :=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


such that ω× x = Σ · x for x ∈ R3. For open sets V ⊂ R3, sufficiently smooth functions
w : V 7→ R3, and for z ∈ V , we set

L(w)(z) := −∆w(z)− (U + ω × z) · ∇w(z) + ω × w(z). (2.4)
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Let K denote the usual fundamental solution to the heat equation, that is,

K(z, t) := (4 · π · t)−3/2 · e−|z|2/(4·t) for z ∈ R3, t ∈ (0,∞).

In order to introduce the fundamental solution constructed by Guenther, Thomann [45]
for the linearized variant of (1.3), we define matrices

G(1)(y, z, t) :=
(
δjk − (y − z(t))j · (y − z(t))k · |y − z(t)|−2

)
1≤j,k≤3

· e−t·Ω,

G(2)(y, z, t) :=
(
δjk/3− (y − z(t))j · (y − z(t))k · |y − z(t)|−2

)
1≤j,k≤3

· e−t·Ω

for y, z ∈ R3, t ∈ (0,∞) with y 6= z(t). Here and in the rest of this paper, we use the
abbreviation

z(t) := e−t·Ω · z − t · U for z ∈ R3, t ∈ [0,∞). (2.5)

The Kummer function 1F1(1, c, u) appearing in the following is defined by

1F1(1, c, u) :=
∞∑

n=0

(
Γ(c)/Γ(n+ c)

)
· un for u ∈ R, c ∈ (0,∞),

where the letter Γ denotes the usual Gamma function. As in [45], the same letter Γ
is used to denote the fundamental solution introduced in that latter reference for a
linearized version of (1.3). This fundamental solution reads

Γjk(y, z, t)

:= K
(
y − z(t), t

)
·
(
G(1)(y, z, t)− 1F1

(
1, 5/2, |y − z(t)|2/(4 · t)

)
·G(2)(y, z, t)

)
jk

for y, z ∈ R3, t ∈ (0,∞) with y 6= z(t), j, k ∈ {1, 2, 3}.
The following estimates of |y − z(t)| will play a fundamental role in our argument.

Lemma 1. The relation |e−t·Ω · v| = |v| holds for v ∈ R3.
Let R ∈ (0,∞), y, z ∈ BR with y 6= z, t ∈ (0,∞) with

t ≤ min
{
|y − z|/(2 · |U |), |y − z|/(24 · |ω| ·R),

(
arccos(3/4)

)
/|ω|

}
.

Then |y − z(t)| ≥ |y − z|/12.

2.2 Main theorems

Theorem 6. Let u ∈ C2(Ω)3, π ∈ C1(Ω), f ∈ C0(Ω)3 with f = L(u) +∇π. Suppose
there is S > 0 with

D ⊂ BS such that∫
R3\BS

|z|−1/2 · |f(z)| dz <∞,

∫
R3\BS

|z|−2 · |divu(z)| dz <∞.

Further suppose there is a sequence (Rn) in (S,∞) such that

R−1/2
n ·

∫
∂BRn

(
|∇u(z)|+ |π(z)|+ |u(z)|

)
doz +R−2

n ·
∫

∂BRn

|divu(z)| doz −→ 0

9



for n→∞. Let j ∈ {1, 2, 3}, y ∈ Ω. Then

uj(y)

=

∫
R3\D

( 3∑
k=1

∫ ∞

0

Γjk(y, z, t) dt · fk(z)

+ (4π)−1 · (y − z)j · |y − z|−3 · div u(z)
)
dz

−
∫

∂D

3∑
k=1

[
3∑

l=1

(∫ ∞

0

Γjk(y, z, t) dt ·
(
∂luk(z)− δkl · π(z) + uk(z) · (U + ω × z)l

)
−

∫ ∞

0

∂zl
Γjk(y, z, t) dt · uk(z)

)
· n(D)

l (z)

−(4 · π)−1 · (y − z)j · |y − z|−3 · uk(z) · n(D)
k (z)

]
doz.

Definition 2.
Let p ∈ (1,∞). Define Mp as the space of all pairs of functions (u, π) such that

u ∈ W 2,p
loc (D

c
)3, π ∈ W 1,p

loc (D
c
),

u|DT ∈ W 1,p(DT )3, π|DT ∈ Lp(DT ), u|∂D ∈ W 2−1/p, p(∂D)3, (2.6)

divu|DT ∈ W 1,p(DT ), L(u) +∇π|DT ∈ Lp(DT )3

for some T ∈ (0,∞) with D ⊂ BT .

Theorem 7. Let p ∈ (1,∞), (u, π) ∈ Mp. Put F := L(u) + ∇π. Suppose there are
numbers S1, S, γ ∈ (0,∞), A ∈ [2,∞), B ∈ R such that S1 < S, D ⊂ BS1 ,

u|Bc
S ∈ L6(Bc

S)3, ∇u|Bc
S ∈ L2(Bc

S)9, π|Bc
S ∈ L2(Bc

S), supp ( div u) ⊂ BS1 ,

A+ min{1, B} ≥ 3, |F (z)| ≤ γ |z|−Asτ (z)
−B for z ∈ Bc

S1
,

where

sτ (x) := 1 + τ (|x| − x1) for x ∈ R3.

Put δ := dist(D, ∂BS). Let i, j ∈ {1, 2, 3}, y ∈ Bc
S. Then

|uj(y)| ≤ C(S, S1, A,B, δ)
(
γ + ‖F |BS1‖1 + ‖divu‖1 + ‖∇u | ∂D‖1 (2.7)

+‖π|∂D‖1 + C̃(D, p)‖u|∂D‖2−1/p,p

)(
|y|sτ (y)

)−1
lA,B(y),

|∂iuj(y)| (2.8)

≤ C(S, S1, A,B, δ)
(
γ + ‖F |BS1‖1 + ‖divu‖1 + ‖∇u | ∂D‖1 + ‖π|∂D‖1

+C̃(D, p)‖u|∂D‖2−1/p,p

)(
|y|sτ (y)

)−3/2
sτ (y)

max(0, 7/2−A−B) lA,B(y),

where C̃(D, p) was introduced in ([17] Lemma 5.2) and function lA,B(y) see ([17], The-
orem 3.3). If the assumption supp( div u) ⊂ BS1 is replaced by the condition

| div u(z)| ≤ γ̃ |z|−C sτ (z)
−D for z ∈ Bc

S1
,
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for some γ̃ ∈ (0,∞), C ∈ (5/2,∞), D ∈ R with C + min{1, D} > 3, then inequality
(2.7) remains valid if the term ‖divu‖1 on the right-hand side of (2.7) is replaced by
γ̃ + ‖divu|BS1‖1. Of course, in that case the constant in (2.7) additionally depends on
C and D.

In the next theorem, we present an asymptotic profile of u for the case that L(u)+∇π
and divu have compact support.

Theorem 8. Let p ∈ (1,∞), (u, π) ∈ Mp, S, S1 ∈ (0,∞) with S1 < S, and put
F := L(u) +∇π. Suppose that

D ∪ supp (F ) ∪ supp (divu) ⊂ BS1 ,

u|Bc
S ∈ L6(Bc

S)3, ∇u|Bc
S ∈ L2(Bc

S)9, π|Bc
S ∈ L2(Bc

s).

Then there are coefficients β1, β2, β3 ∈ R and functions F1,F2,F3 ∈ C0(Bc
S) such that

for j ∈ {1, 2, 3}, y ∈ Bc
S,

uj(y) =
3∑

k=1

βk Zjk(y, 0) +
(∫

∂D
u · n(D) doz +

∫
BS1

divu dz
)
E4j(y) + Fj(y), (2.9)

and

|Fj(y)| ≤ C(S, S1)
(
‖F‖1 + ‖ div u‖1 + ‖∇u | ∂D‖1 + ‖π|∂D‖1 (2.10)

+C(D, p)‖u|∂D‖2−1/p,p

)(
|y|sτ (y)

)−3/2
,

where C(D, p) > 0 only depends on D and p. (Note that |E4j(y)| ≤ C|y|−2 and |y|−2 ≤
C(S)

(
|y|sτ (y)

)−1
for y ∈ Bc

S; (see Lemma 2.4 [17].)

Finally we obtain a representation formula for weak solutions of the stationary Navier-
Stokes system with Oseen and rotational terms.

Theorem 9. Let u ∈ W 1,1
loc (D

c
)3 ∩ L6(D)3 with ∇u ∈ L2(D)9. Let π ∈ L2(D), p ∈

(1,∞), q ∈ (1, 2), f : D
c 7→ R3 a function with f |DT ∈ Lp(DT )3 for T ∈ (0,∞) with

D ⊂ BT , f |Bc
S ∈ Lq(Bc

S)3 for some S ∈ (0,∞) with D ⊂ BS.
Suppose that the pair (u, π) is a weak solution of the Navier-Stokes system with Oseen

and rotational terms, and with right-hand side f , that is,∫
D

c

(
∇u · ∇ϕ+

(
τ (u · ∇)u+ τ ∂1u− (ω × z) · ∇u+ ω × u

)
· ϕ+ πdivϕ

)
dz

=

∫
D

c
f · ϕ dz for ϕ ∈ C∞

0 (D
c
)3, divu = 0.

Then

uj(y) = Rj

(
f − τ (u · ∇)u

)
(y) + Bj(u, π)(y) (2.11)

for j ∈ {1, 2, 3}, a.e. y ∈ D
c
,.

For definition of E4j(x), Zjk(y, z), R(f), Bj(y) see [17].
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3 Asymptotic behavior of the viscous fluids in the

presence of Coriolis forces

For more details see [69].

3.1 Stokes problem in the whole space R3

We consider the Stokes problem with the Coriolis force in the whole space R3. The
system reads

−µ∆u+ ω × u = ∇p+ f,
div u = 0,

(3.1)

where ω is given and we set ω = λg, λ > 0. We assume for the simplicity that g = e2.
The motivation of the problem can be found in the work of Weinberger see [80, 81].

Theorem 10. Let f ∈ Lq(R3), 1 < q < ∞, there exists a pair of functions (u, p)
with u1, u3 ∈ Lq(R3), u ∈ D2,q(R3),∇p ∈ Lq(R3) satisfying the Stokes system (3.1) and
moreover

|u|2,q + |p|1,q + ‖u1‖q + ‖u2‖q ≤ c‖f‖q. (3.2)

Further, if 1 < q < 3 then

|ui|1,q + |u2|1,3q/(3−q) + |u|2,q + |p|1,q + ‖u1‖q + ‖u2‖q ≤ c‖f‖q, i = 1, 3. (3.3)

Finally, if 1 < q < 3/2 then

|ui|1,q + ‖ui‖q + |u2|1,3q/(3−q) + |u2|3q/(3−2q) + |u|2,q + |p|1,q ≤ c‖f‖q, i = 1, 3. (3.4)

3.2 Stokes problem in an exterior domain

We consider the Stokes problem in an exterior domain Ω of class Cm+2, m ≥ 0 with
data f ∈ C∞

0 (Ω̄), v∗ ∈ Wm+2−1/q,q(∂Ω). The governing equations are

−µ∆u+ λg × u = ∇p+ f,
div u = 0,
u|∂Ω = v∗,

limx→∞ u = 0.

(3.5)

Theorem 11. Let Ω be an exterior domain in R3 of class Cm+2,m ≥ 0. Given f ∈
Wm,p(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω), 1 < q < 3/2 there exists one and only one solution
(u, p) to the Stokes problem such that

ui − v∗i ∈ Wm,q(Ω) ∩
{⋂m

l=0[D
l+1,q(Ω) ∩Dl+2,q]

}
, i = 1, 3,

u2 − v∗2 ∈ Wm,3q/(3−2q)(Ω) ∩
{⋂m

l=0[D
l+1,3q/(3−q)(Ω) ∩Dl+2,q]

}
,

p ∈
⋂m

l=0D
l+1,q(Ω).

(3.6)
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Moreover, (u, p) satisfy

‖ui‖m,q + ‖u2‖m,3q/(3−2q) +
∑m

i=0{|ui‖l+1,q + ‖u2‖l+1,3q/(3−q) + |u|l+2,q + |p|l+1,q}

≤ c(‖f‖m,q + ‖v∗‖m+2−1/q,q,∂Ω), i = 1, 3,
(3.7)

where c depends on m,n, q,Ω. Moreover, let f ∈ L1(Ω) then for x ∈ B1 (by B1 we
denote the ball with radius 1 and Bc

1 its complement)

|u(x)| ≤ cm,n|x|−1

|Dβu(x)| ≤ cm,n|x|−1−β, 0 < |β| ≥ 2
(3.8)

and for x ∈ Bc
1, 0 ≤ β ≤ 2

|Dβu(x)| ≤ cm,n|x|−2−β. (3.9)

3.3 Oseen problem in the whole space R3

We investigate the Oseen problem with the Coriolis force in the whole space R3. The
system reads

∂u
∂x2

− µ∆u+ λg × u = ∇p+ f,

div u = 0.
(3.10)

We assume for the simplicity g = e2.

Theorem 12. Let f ∈ Lq(R3), 1 < q < ∞, there exists a pair of functions (u, p) with
u1, u3, ∂u/∂x2 ∈ Lq(R3), u ∈ D2,q(R3),∇p ∈ Lq(R3) satisfying the Oseen system (3.10)
and moreover ∥∥∥ ∂u

∂x2

∥∥∥
q
+

∥∥∥∂ui

∂xl

∥∥∥
q
+ |p|1,q + ‖u1‖q + ‖u2‖q ≤ c‖f‖q, i = 1, 3. (3.11)

Further, if 1 < q < 4 then

|ui|1,q + |u2|1,4q/(4−q) + |u|2,q + |p|1,q +
∥∥∥ ∂u
∂x2

∥∥∥
q
+

∥∥∥∂ui

∂xl

∥∥∥
q
≤ c‖f‖q, i, l = 1, 3. (3.12)

Finally, if 1 < q < 2 then

|ui|1,q + |u2|1,4q/(4−q) + |u2|2q/(2−q) + |u|2,q + |p|1,q +
∥∥∥ ∂u
∂x2

∥∥∥
q
+

∥∥∥∂ui

∂xl

∥∥∥
q
≤ c‖f‖q, i, l = 1, 3.

(3.13)

3.4 Oseen problem in an exterior domain

We consider the Oseen problem in an exterior domain Ω of class Cm+2, m ≥ 0 with data
f ∈ C∞

0 (Ω), v∗ ∈ Wm+2−1/q,q(∂Ω), v∞ 6= 0. The governing equations are

∂u
∂x2

− µ∆u+ λg × u = ∇p+ f,

div u = 0,
u|∂Ω = v∗,

lim|x|→∞ u = v∞.

(3.14)
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Theorem 13. Let Ω be an exterior domain in R3 of class Cm+2,m ≥ 0. Given f ∈
Wm,p(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω), 1 < q < 2 , v∞ ∈ R3 there exists one and only one
solution (u, p) to the Oseen problem such that

ui − v∗i ∈ Wm,q(Ω) ∩
{⋂m

l=0[D
l+1,q(Ω) ∩Dl+2,q]

}
, i = 1, 3,

u2 − v∗2 ∈ Wm,2q/(2−q)(Ω) ∩
{⋂m

l=0[D
l+2,q]

}
,

∂u
∂x2

∈ Wm,q(Ω),

∂u2

∂xl
∈ Wm,4q/(4−q)(Ω),

p ∈
⋂m

l=0D
l+1,q(Ω).

(3.15)

Moreover, (u, p) satisfy

‖ui − v∞i‖m,q + ‖u2 − v∞2‖m,2q/(2−q) +
∑m

i=0{|ui‖l+1,q + ‖∂u2

∂xl
‖l,4q/(4−q) + |u|l+2,q + |p|l+1,q}

≤ c(‖f‖m,q + ‖v∗ − v∞‖m+2−1/q,q,∂Ω), i, l = 1, 3,
(3.16)

where c depends on m,n, q,Ω.

4 Compressible motion

There are several results concerning one dimensional situation, let us mention work of
Kazhikov and Shelukhin in 1977 [53], who firstly proved the global existence in one
dimension for smooth initial data and for discontinuous data we can refer to work of
Serre and Hoff see [73, 47]. The significant progress was made during last twenty years
on the compressible Navier-Stokes system or Navier-Stokes-Fourier system in dimension
2 and 3. We mention the work of Matsumura, Nishida [63, 64, 65] and fundamental
work of P. L. Lions [61] which was extended by Feireisl [33, 34, 35]. We would like
to mention that for large initial data the global existence and large-time behavior of
solutions to the Navier-Stokes-Fourier system have also been obtained in the spherically
symmetric case (see [48, 47, 37]). For other references see [50, 51, 62, 70, 75, 76, 77].
In case when viscosity coefficients dependent on the density and viscosity coefficients
vanish on vacuum and new entropy inequality was proved to provide the regularity for
the density see Bresch and Desjardins [11, 12].

Recently Mellet and Vasseur [66] proved the existence of a solution for the barotropic
Navier-Stokes system, when the viscosity coefficients are density dependent functions
related by the Bresch-Desjardins relation [11], [12], for any “physical” adiabatic exponent
γ > 1.

4.1 Free boundary problem for the equation of one-dimensional
motion of compressible gas with density-dependent viscos-
ity isentropic case

For more details see [70].
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In this part we consider the following system of equations
∂ρ
∂t

+ ∂(ρu)
∂ξ

= 0,

∂
∂t

(ρu) + ∂
∂ξ

(ρu2 + p) = ∂
∂ξ

(
µ∂u

∂ξ

)
− ρg,

(4.1)

where t > 0, 0 < ξ < y(t). The unknown functions ρ, u represent the density and the
velocity, respectively, p = aργ and µ = bρβ are the pressure and the viscosity coefficient,
a, b are positive constants, γ > 1, and 0 < β < γ − 1. The constant g is the gravitation
constant, ξ = 0 is the fixed boundary

u(t, 0) = 0,

and ξ = y(t) is the free boundary, i.e. the interface of the gas and the vacuum;

dy

dt
= u(t, y(t)),

(
p− µ

∂u

∂ξ

)
(t, y(t)) = 0.

We rewrite the equations in the Lagrangean mass coordinate:

x =

∫ ξ

0

ρ(t, ς)dς.

Assuming that ∫ y(t)

0

ρ(t, ξ)dξ = 1,

the above problem is transformed to the following fixed boundary problem
∂ρ
∂t

+ ρ2 ∂u
∂x

= 0,

∂u
∂t

+ ∂p
∂x

= ∂
∂x

(
µρ∂u

∂x

)
− g,

(4.2)

in t > 0 and 0 < x < 1, where p = aργ, µ = bρb with the boundary conditions

u(t, 0) = 0,
(
p− µρ

∂u

∂x

)
(t, 1) = 0 (4.3)

and the initial condition

(ρ, u)(0, x) = (ρ0, u0)(x), 0 ≤ x ≤ 1. (4.4)

We consider the following assumptions (A.1), (A.2) and (A.3) for the initial data and
β:

• (A.1) ρ0 ∈ Lip[0, 1] and ρ0(x) ≥ ρ (ρ is a positive constant),

• (A.2) u0 ∈ C1[0, 1] and du0

dx
∈ Lip[0, 1],

• (A.3) 0 < β < 1
3
.
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Definition 3.
A couple (ρ, u) is called a global weak solution for (4.2) if

ρ, u ∈ L∞([0, T ]× [0, 1]) ∩ C1([0, T ];L2(0, 1)), (4.5)

ρβ+1ux ∈ L∞([0, T ]× [0, 1]) ∩ C1/2([0, T ];L2(0, 1)), (4.6)

for any T ,
∂ρ

∂t
+ ρ2∂u

∂x
= 0, (4.7)

for a.e. x ∈ (0, 1) and for any t ≥ 0, and∫ 1

0

[φut − φx(p− µρux) + φg]dx = 0 (4.8)

with φ ∈ C∞
0 ((0, 1]) and for a.e. t ∈ [0, T ].

Theorem 14. If the assumptions (A.1)–(A.3) hold, then the initial - boundary value
problem (4.2), (4.4), (4.3) admits a global weak solution in the sense (4.5) - (4.8).

Theorem 15. Let us assume (A.1), (A.2), (A.3) and let there exists a constant C(T )
such that

1

C(T )
≤ ρ(t, x) ≤ C(T ), |ux(t, x)| ≤ C(T ). (4.9)

4.2 Free boundary problem for the equation of spherically sym-
metric motion of viscous gas

See [71, 72]. We consider the following model of compressible symmetrical motion, which
are described by the following system of equations

∂ρ
∂t

+ u∂ρ
∂r

+ ρ∂u
∂r

+ 2
r
ρu = 0,

ρ(∂u
∂t

+ u∂u
∂r

) + ∂p
∂r

= ν
(

∂2u
∂r2 + 2

r
∂u
∂r
− 2

r2u
)
− ρM

r2 ,

p = aργ,

(4.10)

where ν, a, γ are positive constants and 1 < γ ≤ 2, ρ is the density and u the velocity
field. We consider the boundary condition

u|r=1 = 0 (4.11)

and the initial conditions
ρ|t=0 = ρ0(r), u|t=0 = u0(r). (4.12)

We are interested in the class of initial data which includes the stationary solutions

ρ =

{
[ (γ−1)M

aγ

(
1
r
− 1

R

)
]1/(γ−1) (r ≤ R),

0 (R < r),
u = 0. (4.13)

We rewrite the equations in the Lagrange mass coordinates:

x = 4π

∫ r

0

ρ(t, s)s2ds.
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The above problem is transformed to the following fixed boundary problem
∂ρ
∂t

+ 4πρ2 ∂
∂x

(r2u) = 0,

∂u
∂t

+ 4πr2 ∂p
∂x

= 16π2ν ∂
∂x

(
r4ρ∂u

∂x

)
− 2ν u

r2ρ
− M

r2 ,

p = aργ,

(4.14)

where

r = [1 +
3

4π

∫ x

0

dξ

ρ(t, ξ)
]1/3.

By normalizing the total mass, we consider the equations (4.14) in 0 ≤ x ≤ 1 with
the boundary conditions

u|x=0 = 0, ρ|x=1 = 0 (4.15)

and the initial conditions

ρ|t=0 = ρ0(x), u|t=0 = u0(x). (4.16)

We consider the following assumptions

• (A.1) ρ0 ∈ C[0, 1] and ρ0(x) ≥ 0 for x ∈ [0, 1), ρ0(1) = 0, total variation [ρ] < ∞
and there exists a monotone decreasing function λ(x) such that 0 ≤ λ(x) ≤ ρ(x)

and
∫ 1

0
dx

λ(x)
<∞,

• (A.2) u0 ∈ C[0, 1],

• (A.3) assume ρ0 = aργ
0 ∈ C1[0, 1] and u0 = 0.

Definition 4.
A couple (ρ, u) is called a global weak solution for (4.14) if

ρ, u ∈ L∞([0, T ]× [0, 1]) ∩ C1([0, T ];L2(0, 1)), (4.17)

ρux ∈ L∞([0, T ]× [0, 1]) ∩ C1/2([0, T ];L2(0, 1)), (4.18)

there exists a constant C(T ) with
1

C(T )
ρ0(x) ≤ ρ(t, x) ≤ C(T )ρ0(x), (4.19)

for a.e. x ∈ (0, 1) and for any t ≥ 0, and satisfying

∂ρ

∂t
+ 4πr2ρ2ux +

2uρ

r
= 0 for a.e. x ∈ (0, 1) and for any t ≤ 0, (4.20)∫ 1

0
[φut − (4πr2φx + 2φ

rρ
)p+ 16π2νφxr

4ρux + 2νφ u
r2ρ

+ φM
r2 ]dx = 0 (4.21)

with φ ∈ C∞
0 (0, 1) and for any t ≥ 0,

ρ(0, x) = ρ0(x) and u(0, x) = u0(x) for any x ∈ [0, 1], (4.22)

and
u(t, 0) = 0 for any t ≥ 0. (4.23)
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Theorem 16. Assume (A1), (A2), (A3). Let (ρ1, u1) and (ρ2, u2) be solutions of
(4.20),(4.21), (4.22), (4.23) satisfying (4.17, (4.18), (4.19) for any T . Then we have
ρ1 = ρ2, u1 = u2.

Let us consider the following additional assumption

• (A4)
∫ 1

0
ρ0

(
1
ρ0
− 1

ρ̄

)2
dx

(1−x)µ < +∞ for some µ > 3
4
.

Theorem 17. Let (A1)–(A4) be satisfied, suppose that a is sufficiently small and let

La < M, where L = L(γ, ν, E∗,M∗, R̄) (4.24)

provided E0 ≤ E∗ and M ≤M∗. Let us assume that the initial pressure p0 satisfies

La(1− x) ≤ p0 ≤M(1− x), (4.25)

where

E0 =

∫ 1

0

(1

2
u2

0 +
1

γ − 1

p0

ρ0

− M

r0

)
dx,

where L is a suitable constant depending on γ, ν, E∗,M∗, R̄ for definition of E∗, R̄ see
[71, 72]. Then the global solution (ρ, u) satisfies∫ 1

0
u(x, t)2dx→ 0,∫ 1

0
ρ0(x)

(
1

ρ(x,t)
− 1

ρ̄(x)

)2
dx

(1−x)3/4 → 0 as t→∞.
(4.26)

4.3 Global existence of solutions for the one-dimensional mo-
tions of a compressible viscous gas with radiation: an “in-
frarelativistic model”

The aim of radiation hydrodynamics is to include the effects of radiation into the hy-
drodynamical framework. When the equilibrium holds between the matter and the
radiation, a simple way to do that is to include local radiative terms into the state func-
tions and the transport coefficients. One knows from quantum mechanics that radiation
is described by its quanta, the photons, which are massless particles traveling at the
speed c of light, characterized by their frequency ν, their energy E = hν (where h is

the Planck’s constant), their momentum ~p = ~ν
c
~Ω, where ~Ω is a unit vector. Statis-

tical mechanics allows us to describe macroscopically an assembly of massless photons
of energy E and momentum ~p by using a distribution function: the radiative intensity
I(r, t, ~Ω, ν). Using this fundamental quantity, one can derive global quantities by in-
tegrating with respect to the angular and frequency variables: the spectral radiative
energy density ER(r, t) per unit volume is then ER(r, t) := 1

c

∫ ∫
I(r, t, ~Ω, ν) dΩ dν, and

the spectral radiative flux ~FR(r, t) =
∫ ∫

~Ω I(r, t, ~Ω, ν) dΩ dν. If matter is in thermody-
namic equilibrium at constant temperature T and if radiation is also in thermodynamic
equilibrium with matter, its temperature is also T and statistical mechanics tells us that
the distribution function for photons is given by the Bose-Einstein statistics with zero
chemical potential.
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In the absence of radiation, one knows that the complete hyrodynamical system is
derived from the standard conservation laws of mass, momentum and energy by using
the Boltzmann’s equation satisfied by the fm(r, ~v, t) and Chapman-Enskog’s expansion
[38]. One gets then formally the compressible Navier-Stokes system

∂tρ+∇ · (ρ~u) = 0,

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) = −∇·
⇒
Π +~f,

∂t(ρε) +∇ · (ρε~u) = −∇~q −
⇒
D :

⇒
Π +g,

(4.27)

where
⇒
Π= −p(ρ, T )

⇒
I +

⇒
π is the material stress tensor for a Newtonian fluid with the

viscous contribution
⇒
π= 2µ

⇒
D +λ∇ · ~u

⇒
I with 3λ + 2µ ≥ 0 and µ > 0, and the strain

tensor
⇒
D such that

⇒
Dij (~u) = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
. ~q is the thermal heat flux and ~F and g are

external force and energy source terms.
When radiation is present, the terms ~f and g include the coupling terms between the

matter and the radiation (neglecting any other external field), depending on I, and I
is driven by a transport equation: the so called radiative transfert integro-differential
equation discussed by Chandrasekhar in [13].

Supposing that the matter is at LTE, the coupled system reads

∂tρ+∇ · (ρ~u) = 0,

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) = −∇·
⇒
Π − ~SF ,

∂t(ρε) +∇ · (ρε~u) = −∇~q −
⇒
D :

⇒
Π −SE,

1

c

∂

∂t
I

(
r, t, ~Ω, ν

)
+ ~Ω · ∇I

(
r, t, ~Ω, ν

)
= St

(
r, t, ~Ω, ν

)
,

(4.28)

where the coupling terms are

St(r, t, ~Ω, ν) = σa(ν, ~Ω, ρ, T,
~Ω · ~u
c

)
[
B(ν, T )− I

(
r, t, ~Ω, ν

)]
+

∫ ∫
σs

(
r, t, ρ, ~Ω′ · ~Ω, ν ′ → ν

) { ν

ν ′
I

(
r, t, ~Ω′, ν ′

)
I

(
r, t, ~Ω, ν

)
−σs

(
r, t, ρ, ~Ω · ~Ω′, ν → ν ′

)
I

(
r, t, ~Ω, ν

)
I

(
r, t, ~Ω′, ν ′

)}
dΩ′ dν ′,

the radiative energy source

SE(r, t) :=

∫ ∫
St(r, t, ~Ω, ν) dΩ dν,

the radiative flux
~SF (r, t) :=

1

c

∫ ∫
~Ω St(r, t, ~Ω, ν) dΩ dν.

In the radiative transfer equation (the last equation (4.28)) the functions σa and σs

describe in a phenomenological way the absorption-emission and scattering properties of
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the interaction photon-matter and the Planck’s function B(ν, θ) describe the frequency-
temperature black body distribution.

In 1D the previous system reads

ρτ + (ρv)y = 0,

(ρv)τ + (ρv2)y + py = µvyy − (SF )R ,[
ρ

(
e+

1

2
v2

)]
τ

+

[
ρv

(
e+

1

2
v2

)
+ pv − κθy − µvvy

]
y

= −(SE)R,

1

c
It + ωIy = S,

(4.29)

In this study we only consider an “infra-relativistic” model of compressible Navier
- Stokes system for a 1D flow coupled to a the radiative transfer equation. As in the
model studied by Amosov [1], we suppose that the fluid motion is so small with respect
to the velocity of light c that one can drop all the 1

c
factors in the previous formulation.

We get then



ρτ + (ρv)y = 0,

(ρv)τ + (ρv2)y + py = µvyy,[
ρ

(
e+

1

2
v2

)]
τ

+

[
ρv

(
e+

1

2
v2

)
+ pv − κθy − µvvy

]
y

= −(SE)R,

ωIy = S,

(4.30)

in the domain O × R+ with O := (0, L), where the density ρ, the velocity v, the
temperature θ depend on the coordinates (y, τ). The radiative intensity I = I(y, τ, ν, ω),
depends also on two extra variables: the radiation frequency ν ∈ R+ and the angular
variable ω ∈ S1 := [−1, 1]. The state functions are the pressure p, the internal energy
e, the heat conductivity κ and the viscosity coefficient µ .

In the standard radiative transfer equation, the source term is

S(y, τ, ν, ω) := Sa,e(y, τ, ν, ω) + Ss(y, τ, ν, ω), (4.31)

where the absorption-emission term is

Sa,e(y, τ, ν, ω) = σa(ν, ω; ρ, θ) [B(ν; θ)− I(y, τ, ν, ω)] , (4.32)

and the scattering term is

Ss(y, τ, ν, ω) = σs(ν; ρ, θ)
[
Ĩ(y, τ, ν, θ)− I(y, τ, ν, ω)

]
, (4.33)

where Ĩ(y, τ, ν) := 1
2

∫ 1

−1
I((y, τ, ν, ω) dω and B is a function of temperature and fre-

quency describing the equilibrium state. We suppose that σa(ν, ω; ρ, θ) and σs(ν; ρ, θ)
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are positive functions. We also define the radiative energy

ER :=

∫ 1

−1

∫ ∞

0

I(y, τ, ν, ω) dν dω, (4.34)

the radiative flux

FR :=

∫ 1

−1

∫ ∞

0

ωI(y, τ, ν, ω) dν dω, (4.35)

and the radiative energy source

(SE)R :=

∫ 1

−1

∫ ∞

0

S(y, τ, ν, ω) dν dω. (4.36)

It is convenient to switch now to Lagrange (mass) coordinates relative to matter flow:
(y, τ) → (x, t). With the transformation rules [8]: ∂y → ρ∂x and ∂τ + v∂y → ∂x, the
previous system reads now

ηt = vx,

vt = σx,(
e+

1

2
v2

)
t

= (σv − q)x − η(SE)R,

ωIx = ηS,

(4.37)

in the transformed domain Q := Ω × R+ with Ω := (0,M) (M is the total mass of
matter), where the specific volume η (with η := 1

ρ
), the velocity v, the temperature θ

and the radiative intensity I depend now on the Lagrangian mass coordinates (x, t).
We also denote by σ := −p + µ vx

η
the stress and by q := −κ θx

η
the heat flux, and the

source term in the last equation is

S(x, t, ν, ω) = σa(ν, ω; η, θ) [B(ν; θ)− I(x, t; ν, ω)]

+σs(ν; η, θ)
[
Ĩ(x, t, ν)− I(x, t, ν, ω)

]
, (4.38)

We consider Dirichlet-Neumann boundary conditions for the fluid unknowns
v|x=0 = v|x=M = 0,

q|x=0 = q|x=M = 0,
(4.39)

and transparent boundary conditions for the radiative intensity
I|x=0 = 0 for ω ∈ (0, 1)

I|x=M = 0 for ω ∈ (−1, 0),
(4.40)

for t > 0, and initial conditions

η|t=0 = η0(x), v|t=0 = v0(x), θ|t=0 = θ0(x), on Ω. (4.41)
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and
I|t=0 = I(x, ν, ω) on Ω× R+ × S1. (4.42)

Pressure and energy are related by the thermodynamical relation

eη(η, θ) = −p(η, θ) + θpθ(η, θ). (4.43)

Finally we assume that state functions e, p and κ (resp. σa,e and σs) are C2 (resp
C0) functions of their arguments for 0 < η < ∞ and 0 ≤ θ < ∞, and we suppose the
following growth conditions

e(η, 0) ≥ 0, c1(1 + θr) ≤ eθ(η, θ) ≤ C1(1 + θr),

−c2η−2(1 + θ1+r) ≤ pη(η, θ) ≤ −C2η
−2(1 + θ1+r),

|pθ(η, θ)| ≤ C3η
−1(1 + θr),

c4(1 + θ1+r) ≤ ηp(η, θ) ≤ C4(1 + θ1+r), pη(η, θ0) ≤ 0,

0 ≤ p(η, θ) ≤ C5(1 + θ1+r),

c6(1 + θq) ≤ κ(η, θ) ≤ C6(1 + θq),

|κη(η, θ)|+ |κηη(η, θ)| ≤ C7(1 + θq),

ησa(ν, ω; η, θ)Bm(ν; θ) ≤ C8|ω|θα+1f(ν, ω) for m = 1, 2,

σa(ν, ω; η, θ) ≤ C9g(ν, ω),[∣∣∣(σa)η

∣∣∣ + |(σa)θ|
]
(ν, ω; η, θ) [1 +B(ν; θ) + |Bθ(ν; θ|] ≤ C10h(ν, ω),

σs(ν; η, θ) ≤ C11k(ν, ω),

(4.44)

where r ∈ [0, 1], q ≥ 2r + 1, 0 ≤ α < r, the numbers cj, Cj, j = 1, ..., 10 are positive
constants and the functions f, g, h, k are such that

f, g, h ∈ L1(R+ × S1) ∩ L∞(R+ × S1),

and
k ∈ L1+γ(R+ × S1) ∩ L∞(R+ × S1),

for an arbitrary small γ > 0.
We suppose also that the viscosity coefficient is a positive constant.
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We study weak solutions for the above problem with properties

η ∈ L∞(QT ), ηt ∈ L∞([0, T ], L2(Ω)),

v ∈ L∞([0, T ], L4(Ω)), vt ∈ L∞([0, T ], L2(Ω)), vx ∈ L∞([0, T ], L2(Ω)),

σx ∈ L∞([0, T ], L2(Ω)),

θ ∈ L∞([0, T ], L2(Ω)), θx ∈ L∞([0, T ], L2(Ω)),

I ∈ L1(Ω× R+ × S1)

(4.45)

where QT := Ω× (0, T ).
We also assume the following conditions on the data:

η0 > 0 on Ω, η0 ∈ L1(Ω),

v0 ∈ L2(Ω), v0
x ∈ L2(Ω),

θ0 ∈ L2(Ω), infΩ θ
0 ≥ 0.

(4.46)

Then our definition of a weak solution for the previous problem is the following

Definition 5. We call (η, v, θ, I) a weak solution of (4.37) if it satisfies

η(x, t) = η0(x) +

∫ t

0

vx ds, (4.47)

for a.e. x ∈ Ω and any t > 0, and if, for any test function φ ∈ L2([0, T ], H1(Ω)) with
φt ∈ L1([0, T ], L2(Ω)) such that φ(·, T ) = 0, one has∫

Q

[
φtv + φxp−

µφx

η
vx

]
dx dt

=

∫
Ω

φ(0, x) v0(x) dx, (4.48)∫
Q

[
φt

(
e+

1

2
v2

)
+ φx (σv − q) + φη(SE)R

]
dx dt

=

∫
Ω

φ(0, x)

(
e0(x) +

1

2
v0(x)2

)
dx, (4.49)

and if, for any test function ψ ∈ H1(Ω)× L1(R+ × S1)), one has∫
R+×S1

[ψxωI + ψηS] dν dω dx = 0. (4.50)

In the following we use the following notation for the integrated radiative intensity

I(x, t) :=

∫ ∞

0

∫
S1

I(x, t;ω, ν) dω dν.

Then our main result is the following

23



Theorem 18. Suppose that the initial data satisfy (4.46) and that T is an arbitrary
positive number. Then the problem (4.37), (4.39)–(4.42) possesses a global weak solution
satisfying (4.45) together with properties (4.47), (4.48) and (4.49).

Moreover one has the uniqueness result

Theorem 19. Suppose that the initial data satisfy (4.46) and that T is an arbitrary
positive number. Then the problem (4.37),(4.39)–(4.42) possesses a global unique weak
solution satisfying (4.45) together with properties (4.47), (4.48) and (4.49).

5 Laplace equation and Stokes problem in the half

space

For more details see [2, 6, 7].

5.1 Notations

For any real number p > 1, we always take p′ to be the Hölder conjugate of p, i.e.

1

p
+

1

p′
= 1.

Let Ω be an open set of RN , N ≥ 2. Writing a typical point x ∈ RN as x = (x′, xN),
where x′ = (x1, . . . , xN−1) ∈ RN−1 and xN ∈ R, we will especially look on the upper

half-space RN
+ = {x ∈ RN ; xN > 0}. We let RN

+ denote the closure of RN
+ in RN and

let Γ = {x ∈ RN ; xN = 0} ≡ RN−1 denote its boundary. Let |x| = (x2
1 + · · · + x2

N)1/2

denote the Euclidean norm of x, we will use two basic weights

% = (1 + |x|2)1/2 and lg% = ln(2 + |x|2).

Weighted Sobolev spaces
For any nonnegative integer m, real numbers p > 1, α and β, we define the following

space:

Wm, p
α, β (Ω) =

{
u ∈ D′(Ω); 0 ≤ |λ| ≤ k, %α−m+|λ| (lg%)β−1 ∂λu ∈ Lp(Ω);

k + 1 ≤ |λ| ≤ m, %α−m+|λ| (lg%)β ∂λu ∈ Lp(Ω)
}
,

(5.1)

where

k =

−1 if N
p

+ α /∈ {1, . . . ,m},

m− N

p
− α if N

p
+ α ∈ {1, . . . ,m}.

Note that Wm, p
α, β (Ω) is a reflexive Banach space equipped with its natural norm:

‖u‖W m, p
α, β (Ω) =

( ∑
0≤|λ|≤k

‖%α−m+|λ| (lg%)β−1 ∂λu‖p

Lp(Ω)

+
∑

k+1≤|λ|≤m

‖%α−m+|λ| (lg%)β ∂λu‖p

Lp(Ω)

)1/p

.
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We also define the semi-norm:

|u|W m, p
α, β (Ω) =

( ∑
|λ|=m

‖%α (lg%)β ∂λu‖p

Lp(Ω)

)1/p

.

The weights in the definition (5.1) are chosen so that the corresponding space satisfies

two fundamental properties. On the one hand, D
(
RN

+

)
is dense in Wm, p

α, β (RN
+ ). On the

other hand, the following Poincaré-type inequality holds in Wm, p
α, β (RN

+ ) (see [2], Theorem
1.1): if

N

p
+ α /∈ {1, . . . ,m} or (β − 1)p 6= −1, (5.2)

then the semi-norm | · |W m, p
α, β (RN

+ ) defines on Wm, p
α, β (RN

+ )/Pq∗ a norm which is equivalent

to the quotient norm,

∀u ∈ Wm, p
α, β (RN

+ ), ‖u‖W m, p
α, β (RN

+ )/Pq∗
≤ C |u|W m, p

α, β (RN
+ ), (5.3)

with q∗ = inf(q,m − 1), where q is the highest degree of the polynomials contained in
Wm, p

α, β (RN
+ ). Now, we define the space

◦
W

m, p
α, β (RN

+ ) = D(RN
+ )

‖·‖
W

m, p
α, β

(RN
+ ) ;

which will be characterized [see Lemma 2.2 [6]] as the subspace of functions with null

traces in Wm, p
α, β (RN

+ ). From that, we can introduce the space W−m, p′

−α,−β(RN
+ ) as the dual

space of
◦
W

m, p
α, β (RN

+ ). In addition, under the assumption (5.2), | · |W m, p
α, β (RN

+ ) is a norm on
◦
W

m, p
α, β (RN

+ ) which is equivalent to the full norm ‖ · ‖W m, p
α, β (RN

+ ). We will now recall some

properties of the weighted Sobolev spaces Wm, p
α, β (RN

+ ).

Remark 2. In the case β = 0, we simply denote the space Wm, p
α, 0 (Ω) by Wm, p

α (Ω).

The spaces of traces

We define the traces of functions of Wm, p
α (RN

+ ). For any real number α ∈ R, we define
the space:

W σ, p
α (RN) =

{
u ∈ D′(RN); wα−σu ∈ Lp(RN),∫

RN×RN

|%α(x)u(x)− %α(y)u(y)|p

|x− y|N+σp
dx dy <∞

}
,

where w = % if N/p+α 6= σ and w = % (lg%)1/(σ−α) if N/p+α = σ. For any s ∈ R+, we
set

W s, p
α (RN) =

{
u ∈ D′(RN); 0 ≤ |λ| ≤ k, %α−s+|λ| (lg%)−1 ∂λu ∈ Lp(RN);

k + 1 ≤ |λ| ≤ [s]− 1, %α−s+|λ| ∂λu ∈ Lp(RN); |λ| = [s], ∂λu ∈ W σ, p
α (RN)

}
,
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where k = s − N/p − α if N/p + α ∈ {σ, . . . , σ + [s]}, with σ = s − [s] and k = −1
otherwise. It is a reflexive Banach space equipped with the norm:

‖u‖W s, p
α (RN ) =

( ∑
0≤|λ|≤k

‖%α−s+|λ| (lg%)−1 ∂λu‖p

Lp(RN )

+
∑

k+1≤|λ|≤[s]−1

‖%α−s+|λ| ∂λu‖p

Lp(RN )

)1/p

+
∑
|λ|=[s]

‖∂λu‖W σ, p
α (RN ).

We can similarly define, for any real number β, the space:

W s, p
α, β(RN) =

{
v ∈ D′(RN); (lg%)β v ∈ W s, p

α (RN)
}
.

5.2 Laplace equation

The aim of this section is to study the problem

(P )

{
−∆u = f in RN

+ ,
u = g on Γ = RN−1.

Theorem 20. Let l ≥ 1 be an integer and assume that

N

p
/∈ {1, ...,−l}. (5.4)

Then for any f ∈ W−1,p
−l (RN

+ ) and g ∈ W
1
p′ ,p

−l (RN−1), problem (P) has a unique solution

u ∈ W 1,p
−l (RN

+ )/A∆
[l+1−N/p] and there exists a constant C independent of u, f and g such

that
inf

q∈A∆

[l+1−N
p ]

‖u+ q‖W 1,p
−l (RN

+ ) ≤ C(‖f‖W−1,p
−l (RN

+ ) + ‖g‖
W

1
p′ ,p

−l (RN−1)

). (5.5)

For definition of A∆
[l+1−N/p] see [2].

Theorem 21. Let m be a nonnegative integer, let g belong to W
1

m′ +m,p(RN−1) and
assume that

f ∈ W−1+m,p
m (RN

+ ) if
N

p′
6= 1 or m = 0, (5.6)

or

f ∈ W−1+m,p
m (RN

+ ) ∩W−1,p
0 (RN

+ ) if
N

p′
= 1 and m 6= 0. (5.7)

Then problem (P) has a unique solution u ∈ W 1+m,p
m (RN

+ ) and u satisfies

‖u‖W m+1,p
m (RN

+ ) ≤ C(‖f‖W−1+m,p
m (RN

+ ) + ‖g‖
W

1
p′ +m,p

m (RN−1)

) if
N

p′
6= 1 or m = 0 (5.8)

and

‖u‖W m+1,p
m (RN

+ ) ≤ C(‖f‖W 1,p
p (RN

+ ) + ‖f‖W−1+m,p
m (RN

+ ) + ‖g‖
W

1
p′ +m,p

m (RN−1)

)

if N
p′

= 1 and m 6= 0.

(5.9)
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5.3 Stokes system

The purpose of this part is the study of the Stokes system

(S+)


−∆u +∇π = f in RN

+ ,
div u = h in RN

+ ,
u = g on Γ = RN−1,

with data and solutions which live in weighted Sobolev spaces, expressing at the same
time their regularity and their behavior at infinity. We will naturally base on the
previously established results on the harmonic and biharmonic operators (see [2], [3],
[4], [5]). We will also concentrate on the basic weights because they are the most
usual and they avoid the question of the kernel for this operator and symmetricaly the
compatibility condition for the data.

Among the first works on the Stokes problem in the half-space, we can cite Cattabriga.
In [15], he applies the potential theory to get explicit solution of the velocity fields and
pressure. For the homogeneous problem (f = 0 and h = 0), for instance, he shows that if
g ∈ Lp(Γ) and the semi-norm |g|

W
1−1/p, p
0 (Γ)

<∞, then ∇u ∈ Lp(RN
+ ) and π ∈ Lp(RN

+ ).

Similar results are given by Farwig-Sohr (see [28]) and Galdi (see [39]), who also
have chosen the setting of homogeneous Sobolev spaces. On the other hand, Maz’ya-
Plamenevskĭı-Stupyalis (see [67]), work within the suitable setting of weighted Sobolev
spaces and consider different types of boundary conditions. However, their results are
limited to the dimension 3 and to the Hilbertian framework in which they give gener-
alized and strong solutions. This is also the case of Boulmezaoud (see [9]), who only
gives strong solutions. Otherwise, always in dimension 3, by Fourier analysis techniques,
Tanaka considers the case of very regular data, corresponding to velocities which belong
to Wm+3,2

2 (R3
+), with m ≥ 0 (see [78]).

Let us also quote, for the evolution Stokes or Navier-Stokes problems, Fujigaki-
Miyakawa (see [29]), who are interested in the behaviour in t→ +∞; Bochers-Miyakawa
(see [10]) and Kozono (see [54]), for the LN -decay property; Ukai (see [79]), for the Lp-Lq

estimates and Giga (see [44]), for the estimates in Hardy spaces.

5.3.1 Generalized solutions to the Stokes system in RN
+

Theorem 22. For any f ∈ W−1,p
0 (RN

+ ), h ∈ Lp(RN
+ ) and g ∈ W

1−1/p,p
0 (Γ), problem

(S+) admits a unique solution (u, π) ∈ W1,p
0 (RN

+ )×Lp(RN
+ ), and there exists a constant

C such that

‖u‖W1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ ) ≤

C
(
‖f‖W−1, p

0 (RN
+ ) + ‖h‖Lp(RN

+ ) + ‖g‖
W

1−1/p, p
0 (Γ)

)
. (5.10)

5.3.2 Strong solutions and regularity for the Stokes system in RN
+

In this section, we are interested in the existence of strong solutions (and then to regular
solutions, see Corollaries 3 and 4), i.e. of solutions (u, π) ∈ W2,p

`+1(R
N
+ ) ×W1,p

`+1(R
N
+ ).

Here, we limit ourselves to the two cases ` = 0 or ` = −1. Note that in the case
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` = 0, we have W 2, p
1 (RN

+ ) ↪→ W 1, p
0 (RN

+ ) and W 1, p
1 (RN

+ ) ↪→ Lp(RN
+ ). The proposition

and theorem which follow show that the generalized solution of Theorem 20, with a
stronger hypothesis on the data, is in fact a strong solution. First, we introduce the
homogeneous case:

−∆u +∇π = 0 in RN
+ , (5.11)

div u = 0 in RN
+ , (5.12)

u = g on Γ. (5.13)

Proposition 1. Assume that
N

p′
6= 1. For any g ∈ W

2−1/p,p
1 (Γ), the Stokes problem

(5.11)–(5.13) has a unique solution (u, π) ∈ W2,p
1 (RN

+ )×W1,p
1 (RN

+ ), with the estimate

‖u‖W2, p
1 (RN

+ ) + ‖π‖W1, p
1 (RN

+ ) ≤ C ‖g‖
W

2−1/p, p
1 (Γ)

.

Now, we can study the strong solutions for the complete problem (S+). As for the
generalized solutions, we will show that it is equivalent to an homogeneous problem,
solved by Proposition 1. The following theorem was established in the case N = 3,
p = 2, by Maz’ya-Plamenevskĭı-Stupyalis (see [67]).

Theorem 23. Assume that
N

p′
6= 1. For any f ∈ W0,p

1 (RN
+ ), h ∈ W1,p

1 (RN
+ ) and

g ∈ W
2−1/p,p
1 (Γ), problem (S+) admits a unique solution (u, π) which belongs to

W2,p
1 (RN

+ )×W1,p
1 (RN

+ ), with the estimate

‖u‖W2, p
1 (RN

+ ) + ‖π‖W1, p
1 (RN

+ ) ≤

C
(
‖f‖W0, p

1 (RN
+ ) + ‖h‖W 1, p

1 (RN
+ ) + ‖g‖

W
2−1/p, p
1 (Γ)

)
.

Corollary 3. Let m ∈ N and assume that
N

p′
6= 1 if m ≥ 1. For any f ∈ Wm−1,p

m (RN
+ ), h ∈

Wm,p
m (RN

+ ) and g ∈ W
m+1−1/p,p
m (Γ), problem (S+) admits a unique solution (u, π) ∈

Wm+1,p
m (RN

+ )×Wm,p
m (RN

+ ), with the estimate

‖u‖Wm+1, p
m (RN

+ ) + ‖π‖Wm, p
m (RN

+ ) ≤

C
(
‖f‖Wm−1, p

m (RN
+ ) + ‖h‖W m, p

m (RN
+ ) + ‖g‖

W
m+1−1/p, p
m (Γ)

)
.

Now, we examine the basic case ` = −1, corresponding to f ∈ Lp(RN
+ ). More

precisely, we have the following result, corresponding to Theorem 23:

Theorem 24. For any f ∈ Lp(RN
+ ), h ∈ W1,p

0 (RN
+ ) and g ∈ W

2−1/p,p
0 (Γ), problem

(S+) admits a solution (u, π) ∈ W2,p
0 (RN

+ ) ×W1,p
0 (RN

+ ), unique if N > p, unique up
to an element of (RxN)N−1 × {0} × R if N ≤ p, with the following estimate if N ≤ p
(eliminate (λ, µ) if N > p):

inf
(λ, µ)∈(RxN)N−1×{0}×R

(
‖u + λ‖W2, p

0 (RN
+ ) + ‖π + µ‖W1, p

0 (RN
+ )

)
≤

C
(
‖f‖Lp(RN

+ ) + ‖h‖W 1, p
0 (RN

+ ) + ‖g‖
W

2−1/p, p
0 (Γ)

)
.
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Corollary 4. Let m ∈ N. For any f ∈ Wm,p
m (RN

+ ), h ∈ Wm+1,p
m (RN

+ ) and g ∈
W

m+2−1/p,p
m (Γ), problem (S+) admits a solution (u, π) ∈ Wm+2,p

m (RN
+ )×Wm+1,p

m (RN
+ ),

unique if N > p, unique up to an element of (RxN)N−1 × {0} × R if N ≤ p, with the
following estimate if N ≤ p (eliminate (λ, µ) if N > p):

inf
(λ, µ)∈(RxN)N−1×{0}×R

(
‖u + λ‖Wm+2, p

m (RN
+ ) + ‖π + µ‖Wm+1, p

m (RN
+ )

)
≤

C
(
‖f‖Wm, p

m (RN
+ ) + ‖h‖W m+1, p

m (RN
+ ) + ‖g‖

W
m+2−1/p, p
m (Γ)

)
.

5.3.3 Very weak solutions for the Stokes system

Proposition 2. Assume that
N

p
6= 1. For any g ∈ W

−1/p,p
−1 (Γ) such that gN = 0, the

Stokes problem (5.11)–(5.13) has a unique solution (u, π) ∈ W0,p
−1 (RN

+ )×W−1,p
−1 (RN

+ ),
with the estimate

‖u‖W0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ ) ≤ C ‖g‖
W

−1/p, p
−1 (Γ)

.

Theorem 25. Assume that
N

p
6= 1. For any g ∈ W

−1/p,p
−1 (Γ), the Stokes problem

(5.11)–(5.13) has a unique solution (u, π) ∈ W0,p
−1 (RN

+ )×W−1,p
−1 (RN

+ ), with the estimate

‖u‖W0, p
−1 (RN

+ ) + ‖π‖W−1, p
−1 (RN

+ ) ≤ C ‖g‖
W

−1/p, p
−1 (Γ)

.

Proposition 3. For any g ∈ W
−1/p,p
0 (Γ) such that gN = 0, and g′ ⊥ RN−1 if N ≤ p′,

the Stokes problem (5.11)–(5.13) has a unique solution (u, π) ∈ Lp(RN
+ )×W−1,p

0 (RN
+ ),

with the estimate

‖u‖Lp(RN
+ ) + ‖π‖W−1, p

0 (RN
+ ) ≤ C ‖g‖

W
−1/p, p
0 (Γ)

.

Theorem 26. For any g ∈ W
−1/p,p
0 (Γ) such that g ⊥ RN if N ≤ p′, the Stokes problem

(5.11)–(5.13) has a unique solution (u, π) ∈ Lp(RN
+ )×W−1,p

0 (RN
+ ), with the estimate

‖u‖Lp(RN
+ ) + ‖π‖W−1, p

0 (RN
+ ) ≤ C ‖g‖

W
−1/p, p
0 (Γ)

.

5.4 Stokes problem with Navier condition

For the stationary Stokes problem

−∆u +∇π = f and div u = h in Ω,

where Ω is a domain of RN , there are several possible boundary conditions. Under the
hypothesis of impermeability of the boundary, the velocity field u satisfies

u · n = 0 on ∂Ω, (5.14)

where n stands for the outer normal vector. According to the idea that the fluid cannot
slip on the wall due to its viscosity, we get the no-slip condition

uτ = 0 on ∂Ω, (5.15)
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where uτ = u−(u ·n)n denotes, as usual, the tangential component of u. The Dirichlet
boundary value problem, which was suggested by Stokes, is the combination of (5.14)
and (5.15). Concerning this problem, the literature is well known and extensive. Espe-
cially in the case of the half-space, we would like to mention the works of Cattabriga
[15], Tanaka [78], Farwig and Sohr [28], and Galdi [39], where the solution of the prob-
lem is investigated in homogeneous Sobolev spaces, whereas in the works of Maz’ya,
Plamenevskĭı, and Stupyalis [67] and Boulmezaoud [9], we can find results in weighted
Sobolev spaces. This is also the functional framework of our previous work (see [6]) and
also see Section 5.3.

The correctness of the no-slip hypothesis has been a subject of discussion for over two
centuries among many distinguished scientists. Instead of (5.15), Navier had already
proposed the following condition saying that the velocity on the boundary is proportional
to the tangential component of the stress:

(T · n)τ + β uτ = 0 on ∂Ω, (5.16)

where T denotes the viscous stress tensor and β is a friction coefficient. For the incom-
pressible isotropic fluids, the viscous stress tensor is given by

T = −π I + ν (∇u +∇uT).

The case β = 0 is termed complete slip, while (5.16) reduces to (5.15) in the asymptotic
limit β →∞. The aim of this paper is to investigate the Stokes problem in the half-space
with the following type of slip boundary conditions:

(S])

{
−∆u +∇π = f and div u = h in Rn

+,
un = gn and ∂nu

′ = g′ on Γ.

Similarly as in Section 5.3 the weak, strong and very weak solution were investigated.

5.4.1 Weak solutions

Proposition 5.1. For any gn ∈ W 1−1/p, p
0 (Γ) and g′ ∈ W

−1/p,p
0 (Γ) such that g′ ⊥ RN−1

if N ≤ p′, the Stokes problem

−∆u +∇π = 0 in RN
+ , (5.17a)

div u = 0 in RN
+ , (5.17b)

un = gn on Γ, (5.17c)

∂nu
′ = g′ on Γ (5.17d)

has a solution (u, π) ∈ W1,p
0 (RN

+ )×Lp(RN
+ ), unique if N > p, unique up to an element

of RN−1 × {0}2 if N ≤ p, with the estimate

inf
h∈RN−1×{0}

‖u + ‖W1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ )

≤ C
(
‖gn‖W

1−1/p, p
0 (Γ)

+ ‖g′‖
W

−1/p, p
0 (Γ)

)
if N ≤ p, and the corresponding estimate without inf (h = 0) if N > p.
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Theorem 27. Assume that N
p′
6= 1. For any f ∈ W0,p

1 (RN
+ ), h ∈ W 1, p

1 (RN
+ ), gn ∈

W
1−1/p, p
0 (Γ), and g′ ∈ W

−1/p,p
0 (Γ), satisfying the following compatibility condition if

N < p′:

∀i ∈ {1, . . . , N − 1},
∫
RN

+

fi dx = 〈gi, 1〉
W

−1/p, p
0 (Γ)×W

1/p, p′
0 (Γ)

, (5.18)

problem (S]) admits a solution (u, π) ∈ W1,p
0 (RN

+ )×Lp(RN
+ ), unique if N > p, unique

up to an element of RN−1 × {0}2 if N ≤ p, with the estimate

inf
h∈RN−1×{0}

‖u + h‖W1, p
0 (RN

+ ) + ‖π‖Lp(RN
+ )

≤ C
(
‖f‖W0, p

1 (RN
+ ) + ‖h‖W 1, p

1 (RN
+ ) + ‖gn‖W

1−1/p, p
0 (Γ)

+ ‖g′‖
W

−1/p, p
0 (Γ)

)
if N ≤ p, and the corresponding estimate without inf (h = 0) if N > p.

5.4.2 Strong solutions

Theorem 28. Let ` ∈ Z with hypothesis

N/p′ /∈ {1, . . . , `+ 1} and N/p /∈ {1, . . . ,−`− 1}. (5.19)

For any f ∈ W0,p
`+1(R

N
+ ), h ∈ W 1, p

`+1(R
N
+ ), gn ∈ W 2−1/p, p

`+1 (Γ), g′ ∈ W
1−1/p,p
`+1 (Γ), satisfying

condition

∀ϕ ∈ N∆
[1+`−N/p′] ×A∆

[1+`−N/p′],∫
RN

+

(f −∇h) · ϕ dx + 〈div f , ΠNdivϕ〉
W−1, p

`+1 (RN
+ )×

◦
W

1, p′
−`−1(RN

+ )

+

∫
Γ

gn ∂nϕn dx′ − 〈g′, ϕ′〉
W

−1/p, p
` (Γ)×W

1−1/p′, p′
−` (Γ)

= 0,

(5.20)

problem (S]) admits a solution (u, π) ∈ W2,p
`+1(R

N
+ ) × W1,p

`+1(R
N
+ ), unique up to an

element of S]
[1−`−N/p], with the estimate

inf
(λ, µ)∈S]

[1−`−N/p]

(
‖u + λ‖W2, p

`+1(RN
+ ) + ‖π + µ‖W1, p

`+1(RN
+ )

)
≤ C

(
‖f‖W0, p

`+1(RN
+ ) + ‖h‖W 0, p

`+1(RN
+ ) + ‖gn‖W

2−1/p, p
`+1 (Γ)

+ ‖g′‖
W

1−1/p, p
`+1 (Γ)

)
.

5.4.3 Very weak solutions

Theorem 29. Let ` ∈ Z and assume that

N/p′ /∈ {1, . . . , `+ 1} and N/p /∈ {1, . . . ,−`+ 1}.
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For any f ∈ W0,p
`+1(R

N
+ ), h ∈ W 1, p

`+1(R
N
+ ), gn ∈ W−1/p, p

`−1 (Γ), g′ ∈ W
−1−1/p,p
`−1 (Γ), satisfying

the compatibility condition

∀ϕ ∈ N∆
[1+`−N/p′] ×A∆

[1+`−N/p′],∫
RN

+

(−∇h) · ϕ dx + 〈div f , ΠNdivϕ〉
W−1, p

`+1 (RN
+ )×

◦
W

1, p′
−`−1(RN

+ )

+ 〈gn, ∂nϕn〉W−1/p, p
`−1 (Γ)×W

1−1/p′, p′
−`+1 (Γ)

− 〈g′, ϕ′〉
W

−1−1/p, p
`−1 (Γ)×W

2−1/p′, p′
−`+1 (Γ)

= 0,

problem (S]) admits a solution (u, π) ∈ W0,p
`+1(R

N
+ ) × W−1,p

`−1 (RN
+ ), unique up to an

element of S]
[1−`−N/p], with the estimate

inf
(λ, µ)∈S]

[1−`−N/p]

(
‖u + λ‖W0, p

`−1(RN
+ ) + ‖π + µ‖W−1, p

`−1 (RN
+ )

)
≤ C

(
‖f‖W0, p

`+1(RN
+ ) + ‖h‖W 0, p

`+1(RN
+ ) + ‖gn‖W

−1/p, p
`−1 (Γ)

+ ‖g′‖
W

−1−1/p, p
`−1 (Γ)

)
.
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Communicated by W. Wendland

SUMMARY

We study time-periodic Oseen flows past a rotating body in R3 proving weighted a priori estimates in
Lq -spaces using Muckenhoupt weights. After a time-dependent change of coordinates the problem is
reduced to a stationary Oseen equation with the additional terms (� ∧ x) · ∇u and −�∧ u in the equation
of momentum where � denotes the angular velocity. Due to the asymmetry of Oseen flow and to describe
its wake we use anisotropic Muckenhoupt weights, a weighted theory of Littlewood–Paley decomposition
and of maximal operators as well as one-sided univariate weights, one-sided maximal operators and a
new version of Jones’ factorization theorem. Copyright q 2007 John Wiley & Sons, Ltd.

KEY WORDS: Littlewood–Paley theory; maximal operators; rotating obstacles; stationary Oseen flow;
anisotropic Muckenhoupt weights; one-sided weights; one-sided maximal operators

1. INTRODUCTION

We consider a three-dimensional rigid body K⊂⊂R3 rotating with angular velocity �=�̃(0, 0, 1)T,
�̃ �= 0, and assume that the complement R3\K is filled with a viscous incompressible fluid modelled
by the Navier–Stokes equations. Then we will analyse the viscous flow either past the rotating
body K with velocity u∞ = ke3 �= 0 at infinity or around a rotating body K which is moving in
the direction of its axis of rotation. Given the coefficient of viscosity �>0 and an external force
f̃ = f̃ (y, t), we are looking for the velocity v = v(y, t) and the pressure q = q(y, t) solving the
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nonlinear system

vt − ��v + v · ∇v + ∇q = f̃ in �(t), t>0

div v = 0 in �(t), t>0

v(y, t) = � ∧ y on ��(t), t>0

v(y, t) → u∞ �= 0 as |y|→∞

(1)

Here the time-dependent exterior domain �(t) is given—due to the rotation with angular velocity
�—by

�(t) = O�(t)�

where � ⊂ R3 is a fixed exterior domain and O�(t) denotes the orthogonal matrix:

O�(t) =
⎛⎜⎝
cos �̃t − sin �̃t 0

sin �̃t cos �̃t 0

0 0 1

⎞⎟⎠ (2)

Introducing the change of variables and the new functions

x = O�(t)Ty and u(x, t) = OT
�(t)(v(y, t) − u∞), p(x, t) = q(y, t) (3)

respectively, as well as the force term f (x, t) = O(t)T f̃ (y, t) we arrive at the modified Navier–
Stokes system

ut − ��u + u · ∇u + k�3u − (� ∧ x) · ∇u + � ∧ u + ∇ p = f in �× (0,∞)

div u = 0 in �× (0,∞)

u(x, t) → 0 as |x | → ∞
(4)

with boundary condition u(x, t) = �∧ x − u∞ on �� in the exterior time-independent domain �.
Due to the new coordinate system attached to the rotating body the nonlinear system (4) contains

two new linear terms, the classical Coriolis force term � ∧ u (up to a multiplicative constant) and
the term (�∧ x) ·∇u which is not subordinate to the Laplacian in unbounded domains. Linearizing
(4) in u at u ≡ 0 and considering only the stationary problem we arrive at the modified Oseen
system

−��u + k�3u − (� ∧ x) · ∇u + � ∧ u + ∇ p = f in �

div u = 0 in �

u → 0 at ∞
(5)

together with the boundary condition u(x, t) =� ∧ x − u∞ on ��. Note that there is no boundary
condition in the case �= R3.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:551–574
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The linear system (5) has been analysed in classical Lq -spaces, 1<q<∞, for the whole space
case in [1, 2] proving the a priori estimate

‖�∇2u‖q + ‖∇ p‖q � c‖ f ‖q

‖k�3u‖q + ‖(� ∧ x) · ∇u + � ∧ u‖q � c

(
1 + k4

�2|�|2
)

‖ f ‖q
(6)

with a constant c>0 independent of �, k and �. For a discussion of weak solutions, we refer to
[3, 4]; the spectrum of the linear operator defined by (5) is considered in [5]. The corresponding
case when u∞ = 0 has recently been analysed in [6–13]. For a more comprehensive introduction
including physical considerations and nonNewtonian fluids we refer to [14].

The aim of this paper is to generalize the a priori estimate (6) to weighted Lq -spaces for the
whole space R3. For this reason, we introduce the weighted Lebesgue space

Lq
w(R3) = Lq

w =
{
u ∈ L1

loc(R
3) : ‖u‖q,w =

(∫
Rn

|u(x)|qw(x) dx

)1/q

<∞
}

where w ∈ L1
loc is a nonnegative weight function and should reflect the anisotropy of the flow

and the existence of a wake region in the downstream direction x3>0. Our tools will include
Littlewood–Paley theory, singular integral operators, multiplier operators and maximal operators
in weighted spaces so that we need weight functions satisfying Muckenhoupt-type conditions. For
a totally different approach using variational methods see [15].
Definition 1.1
Let R be a collection of bounded sets R in Rn , each of positive Lebesgue measure |R|. A weight
function 0�w ∈ L1

loc belongs to the Muckenhoupt class Aq(R) = Aq(R
n,R), 1�q<∞, if there

exists a constant C>0 such that

sup
R

(
1

|R|
∫
R

w(x) dx

)(
1

|R|
∫
R

w−1/(q−1) dx

)q−1

�C for any R ∈R

if 1<q<∞, and

sup
R∈R,R � x0

1

|R|
∫
R

w(x) dx�Cw(x0) for a.a. x0 ∈ Rn

if q = 1, respectively.

Due to the anisotropic nature of our problem we shall need a variant of the classical Muckenhoupt
class Aq(C) = Aq(R

3,C), where C is the set of all cubes Q ⊂ R3 with edges parallel to the
coordinate axes. Namely, C is replaced by J, the set of all bounded intervals (rectangles) in R3,
leading to the class Aq(J) = Aq(R

3,J). Obviously, Aq(R
3,J) � Aq(R

3,C).
Moreover, to describe the anisotropy of the wake region more precisely by weights we have to

introduce in addition to the weights on Rn one-sided Muckenhoupt weights and one-sided maximal
operators on the real line, see Definition 1.2, Theorem 2.3 and Lemma 2.4.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:551–574
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Definition 1.2

(i) For every locally integrable function u on the real line let, M+u be defined by

M+u(x)= sup
h>0

1

h

∫ x+h

x
|u(t)| dt

Analogously,

M−u(x)= sup
h>0

1

h

∫ x

x−h
|u(t)| dt

(ii) A weight function 0�w ∈ L1
loc(R) lies in the weight class A−

1 if there exists a con-
stant c>0 such that M+w(x)�cw(x) for almost all x ∈ R. Analogously, w ∈ A+

1 if and
only if M−w(x)�cw(x) for almost all x ∈ R. The smallest constant c�0 satisfying
M±w(x)�cw(x) for almost all x ∈ R is called the A∓

1 -constant of w.
(iii) A weight function 0�w ∈ L1

loc belongs to the one-sided Muckenhoupt class A+
q , 1<q<∞,

if there exists a constant C>0 such that for all x ∈ R

sup
h>0

(
1

h

∫ x

x−h
w(t) dt

)(
1

h

∫ x+h

x
w(t)−1/(q−1) dt

)q−1

�C

The smallest constant C�0 satisfying this estimate is called the A+
q -constant of w. By

analogy, we define the set of weights A−
q and the A−

q -constant of a weight in A−
q .

Now we are in a position to describe the most general weights considered in this paper. Note
that these weights are independent of the angular variable � in the cylindrical coordinate system
(r, �, x3) ∈ [0, ∞)× [0, 2�] × R attached to the axis of revolution e3 = (0, 0, 1)T. Hence, we will
write w(x)=w(x1, x2, x3) = wr (x3) for r = |(x1, x2)|, x = (x1, x2, x3).

Definition 1.3
For 1�q<∞, let

Ã−
q = Ã−

q (R3) = {w ∈ Aq(R
3) : w is �-independent for a.a. r>0

w(x1, x2, ·) =wr (·) ∈ A−
q (R)

with A−
q (R)-constant essentially bounded in r}

(7)

Theorem 1.4
Let the weight function 0�w ∈ L1

loc(R
3) be independent of the angular variable � and satisfy the

following condition depending on q ∈ (1,∞):

2�q<∞ : w� ∈ Ã−
�q/2 for some � ∈ [1, ∞)

1<q<2 : w� ∈ Ã−
�q/2 for some � ∈

(
2

q
,

2

2 − q

] (8)

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:551–574
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(i) Given f ∈ Lq
w(R3)3 there exists a solution (u, p) ∈ L1

loc(R
3)3 × L1

loc(R
3) of (5) satisfying

the estimate

‖�∇2u‖q,w + ‖∇ p‖q,w�c‖ f ‖q,w (9)

with a constant c= c(q, w)>0 independent of �, k and �.
(ii) Let f ∈Lq1

w1(R
3)3∩Lq2

w2(R
3)3 such that both (q1, w1) and (q2, w2) satisfy conditions (8), and

let u1, u2 ∈ L1
loc(R

3)3 together with corresponding pressure functions p1, p2 ∈ L1
loc(R

3) be
solutions of (5) satisfying (9) for (q1, w1) and (q2, w2), respectively. Then there are �, �∈ R

such that u1 coincides with u2 up to an affine linear field �e3 + �� ∧ x, �, �∈ R.

Corollary 1.5
Let the weight function 0�w ∈ L1

loc(R
3) be independent of the angular variable �. Moreover, let

w satisfy the following condition depending on q ∈ (1, ∞):

2�q<∞ : w� ∈ Ã−
�q/2(J) for some � ∈ [1,∞)

1<q<2 : w� ∈ Ã−
�q/2(J) for some � ∈

(
2

q
,

2

2 − q

] (10)

where the weight class Ã−
� (J), 1��<∞, is defined by

Ã−
� (J) = Ã−

� (R3) ∩ A�(J)

Given f ∈ Lq
w(R3)3 there exists a solution (u, p) ∈ L1

loc(R
3)3 × L1

loc(R
3) of (5) satisfying the

estimate

‖k�3u‖q,w + ‖(� ∧ x) · u − � ∧ u‖q,w�c

(
1 + k5

�5/2|�|5/2
)

‖ f ‖q,w (11)

with a constant c= c(q, w)>0 independent of �, k and �.

We remark that the �-dependent term 1 + k5/�5/2|�|5/2 in (11) cannot be avoided in general;
see [2] for an example in the space L2(R3).

As an example of anisotropic weight functions we consider

w(x)= ��
�(x)= (1 + |x |)�(1 + s(x))�, s(x)= |(x1, x2, x3)| − x3 (12)

introduced in [16] to analyse the Oseen equations; see also [3, 15].
Corollary 1.6
The a priori estimate (9) holds for the anisotropic weights w = ��

�, see (12), provided that

2�q<∞ : −q

2
<�<

q

2
, 0��<

q

2
and � + �>−1

1<q<2 : −q

2
<�<q − 1, 0��<q − 1 and � + �>−q

2

Note that the condition ��0 will reflect the existence of a wake region in the downstream
direction x3>0 where the solution of the original nonlinear problem (1) will decay slower than in
the upstream direction x3<0.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:551–574
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2. PRELIMINARIES

To prove Theorem 1.4 we need several properties of Muckenhoupt weights and of maximal
operators. Recall that J stands for the set of all nondegenerate rectangles in Rn with edges
parallel to the coordinate axes.

Proposition 2.1

(1) Let 	 be a nonnegative regular Borel measure such that the strong centred Hardy–Littlewood
maximal operator

MJ	(x)= sup
R∈J,R�x

1

|R|
∫
R
d	

is finite for almost all x ∈ Rn; here R runs through the collection J of rectangles containing
additionally the point x , and |R| denotes the Lebesgue measure of R. Then (MJ	)
 ∈ A1(J)

for all 
∈ [0, 1).
(2) For all 1<q<�, we have A1(J) ⊂ Aq(J) ⊂ A�(J).
(3) Let 1<q<∞ and w ∈ Aq(J). Then there are w1, w2 ∈ A1(J) such that

w = w1

w
q−1
2

Conversely, given w1, w2 ∈ A1(J), the weight w =w1w
1−q
2 belongs to Aq(J).

For the proofs see [17, Chapter IV, Section 6]. Claim (3) is a variant of Jones’ factorization
theorem, see [17, Chapter IV, Theorem 6.8].

For a rapidly decreasing function u ∈S(Rn), let

Fu(�) = û(�) = 1

(2�)n/2

∫
Rn

e−ix ·�u(x) dx, � ∈ Rn

be the Fourier transform of u. Its inverse will be denoted by F−1. Moreover, we define the centred
Hardy–Littlewood maximal operator

Mu(x)= sup
Q�x

1

|Q|
∫
Q

|u(y)| dy, x ∈ Rn

for u ∈ L1
loc(R

n) where Q runs through the set of all closed cubes centred at x .

Theorem 2.2
Let 1<q<∞ and w ∈ Aq .

(i) The operator M, defined e.g. on S(Rn), is a bounded operator from Lq
w to Lq

w.
(ii) Let m ∈Cn(Rn\{0}) satisfy the pointwise Hörmander–Mikhlin multiplier condition

|�||�| |D�m(�)|�c� for all � ∈ Rn\{0}
and all multiindices � ∈ Nn

0 with |�|�n1 ∈ N, where n1�n/2. Then the multiplier operator
u �→F−1(mû), u ∈S(Rn), can be extended to a bounded linear operator from Lq

w to Lq
w.

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:551–574
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(iii) Let m be of class Cn in each ‘quadrant’ of Rn and let a constant B�0 exist such that
‖m‖∞�B,

sup
xk+1,...,xn

∫
I

∣∣∣∣∣ �km(x)

�x1 · · · �xk

∣∣∣∣∣ dx1 . . . dxk�B

for any dyadic interval I in Rk , 1�k�n, and also for any permutation of the variables
x1, . . . , xk within x1, . . . , xn . If 1<p<∞ and w ∈ Ap(R

n,J), then m defines a bounded
multiplier operator from L p

w(Rn) to L p
w(Rn).

Proof
(i) See [17, Theorem IV 2.8], [18, Theorem 9] and (ii) see [17, Theorem IV 3.9] or [19, Theorem 4].
Note that the pointwise condition on m implies the integral condition in [17, 19]. For the proof of
(iii) see [19]. �

Concerning one-sided weights and one-sided maximal operators on the real line, see Definition
1.2, we first recall the following duality property: w ∈ A+

q if and only if w−q ′/q =w−1/(q−1) ∈ A−
q ′ .

Moreover, we will need the following results:

Theorem 2.3 (Theorem 1 of [20])
Let 1<p<∞ and p′ = p/(p − 1).

(i) Let w1∈ A+
1 , w2∈ A−

1 . Then w1/w
p−1
2 ∈ A+

p . Conversely, given w∈ A+
p there exist w1∈ A+

1 ,

w2 ∈ A−
1 such that w = w1/w

p−1
2 .

(ii) The operator M+ is continuous from L p
w(R) to itself if and only if w ∈ A+

p . Analogously,
M− : L p

w(R) → L p
w(R) if and only if w ∈ A−

p .

Obviously, Ap ⊂ A±
p where Ap denotes the usual Muckenhoupt class on the real line. Hence

|x |�, (1+|x |)� ∈ A±
p if −1<�<p−1, 1<p<∞. However, in view of the anisotropic weight w = ��

�

on R3, see (12), we have to consider also one-dimensional anisotropic weight functions such as

w̃�,�(x)= w̃�,�(x; r) = (r2 + x2)�/2(
√
r2 + x2 − x)�, x ∈ R, r>0 (13)

Lemma 2.4

(i) For every r>0, the univariate weight w̃�,�(x; r) lies in A−
1 if and only if ��0, ��� and

� + �>−1. Moreover, the A−
1 -constant of w̃�,� is uniformly bounded in r .

(ii) For every r>0, the univariate weight

w�,�(x)=w�,�(x; r) = (1 + r2 + x2)�/2(1 +
√
r2 + x2 − x)�

lies in A−
1 with an A−

1 -constant independent of r>0 if and only if

��0�� and � + �>−1 (14)
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(iii) Let 1<p<∞. Then for every r>0

w�,�(· ; r) ∈ A+
p for �>−1, ��0, � + �<p − 1

w�,�(· ; r) ∈ A−
p for �<p − 1, ��0, � + �>−1

(15)

Moreover, the A±
p -constant is uniformly bounded in r>0.

Proof
(i) A simple scaling argument shows that it suffices to look at the weight w̃ = w̃�,� in (13) for
r = 1 only and that the A−

1 -constant is independent of r>0. We will consider three cases.

Case 1: x>0. Then w̃(x)∼ (1 + |x |)�−�, i.e. there exists a constant c>0 independent of x>0
such that (1/c)(1 + |x |)�−��w̃(x)�c(1 + |x |)�−� for all x>0. Hence, for all h>0

1

h

∫ x+h

x
w̃(t) dt ∼ 1

h

∫ x+h

x
(1 + t)�−� dt

If �−�>0, then the term on the right-hand side is strictly increasing to +∞ as h → ∞. Thus, we
are led to the condition ���.

Now let ���. Then for all h>0

1

h

∫ x+h

x
(1 + t)�−� dt�1

h

∫ x+h

x
(1 + x)�−� dt = (1 + |x |)�−� ∼ w̃(x)

Case 2: x<0 and 0<h<|x |. Then w̃(t) ∼ (1 + |t |)�+� for all t ∈ (x, x + h). Assume that
� + �=−1 and let h = |x |. Then

1

|x |
∫ 0

x
(1 + |t |)−1 dt = log(1 + |x |)

|x |
is not bounded by cw̃(x)= c/|x | uniformly in x<0 for any constant c>0. Analogously, if �+�<−1,
then for h = |x | we see that (1/|x |) ∫ 0

x (1 + |t |)�+� dt ∼ 1/|x | is not bounded by cw̃(x)= c(1 +
|x |)�+� uniformly in x<0. Hence, in the following we have to assume that � + �>−1. We shall
consider two subcases: h>0 small with respect to |x | and h comparable with |x |. If 0<h<|x |/2,
then

1

h

∫ x+h

x
(1 + |t |)�+� dt ∼ 1

h

∫ x+h

x
(1 + |x |)�+� dt = (1 + |x |)�+� ∼ w̃(x)

For the second subcase, assume that |x |/2<h<|x |. Then we are led to the integral

1

|x |
∫ x+h

x
(1 + |t |)�+� dt

� 1

|x |
∫ 0

x
(1 + |t |)�+� dt ∼

⎧⎪⎨⎪⎩
(1 + |x |)�+�+1

|x | , |x |>1

1, |x |<1

∼ w̃(x)
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Case 3: x<0 and h>|x |. In this case, we have to consider the sum

1

h

∫ 0

x
w̃ dt + 1

h

∫ x+h

0
w̃ dt� 1

|x |
∫ 0

x
w̃ dt + c

h

∫ x+h

0
(1 + t)�−� dt =: I1 + I2

where the first integral I1 is bounded by cw̃(x) uniformly in x<0, see Case 2, and where for
|x |<1 the second integral I2 is bounded by c∼ w̃(x). Therefore, let |x |>1 in the following. If
� − ��−1, then the condition � + �>−1 implies that �>0; moreover, I2 is easily shown to be
bounded by cw̃(x)∼ (1 + |x |)�+� uniformly in x<0 and h>|x |.

Now consider the case � − �>−1. We shall investigate three possibilities of the position of h
with respect to |x |. If h = 2|x |, then

1

|x |
∫ |x |

0
(1 + t)�−� dt = c

|x | ((1 + |x |)�−�+1 − 1)

Since 1/|x |=o(|x |�+�)=o(w̃(x)) by the condition that �+�>−1, the assertion I2�cw̃(x)∼|x |�+�

necessarily implies that |x |�−��c|x |�+� for |x |>1. Thus, � must be nonnegative.
Next, if |x |<h<2|x |, then, since � − ��� + � and � + �>−1,

I2�
c

|x |
∫ |x |

0
(1 + t)�−� dt�c|x |�+� ∼ w̃(x)

Finally, if h>2|x |>2, then

I2�
c

h
(1 + x + h)�−�+1�ch�−��c|x |�+� ∼ w̃(x)

since ��� (see Case 1). Summarizing the previous cases and estimates we have proved that there
exists c>0 such that M+w̃(x)�cw̃(x) for a.a. x ∈ R, and that this results holds if and only if
��0, ��� and � + �>−1.

(ii) To verify the necessity of (14) let r = 1 andw = w�,�. For x>0 when (1+
√
r2 + x2−x)� ∼ 1,

we have to estimate

1

h

∫ x+h

x
w(t) dt ∼ 1

h

∫ x+h

x
(1 + t)� dt

by cw(x)∼ (1 + x)�. As in Case 1 of Part (i) (with �= 0) we get the necessary condition ��0.
Let x<0. Again we shall distinguish according to the size of h with respect to |x |. If 0<h<|x |,

then w(t)∼ (1 + |t |)�+� for all t ∈ (x, x + h), and

1

h

∫ x+h

x
w(t) dt ∼ 1

h

∫ x+h

x
(1 + |t |)�+� dt

is bounded by cw(x)∼ (1 + |x |)�+� only when � + �>−1; cf. Case 2 of Part (i). Finally, when
x<0 and h>|x |, say h = 2|x |>2, and when �>−1, then

1

h

∫ x+h

x
w(t) dt ∼ 1

h

∫ 0

x
(1 + |t |)�+� dt + 1

h

∫ x+h

0
(1 + t)� dt�cw(x) + c|x |�

which is bounded by cw(x)∼ (1 + |x |)�+� only if ��0. However, if ��−1, then the condition
�+�>−1 implies that even �>0. Hence, the conditions (14) are necessary to prove that w ∈ A−

1 .
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We shall prove that conditions (14) are sufficient for w�,�(x; r) ∈ A−
1 with an A−

1 -constant
independent of r>0. Let us assume that (14) holds and let first 0<r<1. Then

w(t) ∼ (1 + |t |)� ·
{
1, t>0

(1 + |t |)�, t<0

∼ (1 + |t |)�+�/2 ·
{

(1 + |t |)−�/2, t>0

(1 + |t |)�/2, t<0
∼ w̃�′,�′(t; r)

where �′ = �+�/2, �′ = �/2. Since assumptions (14) on �, � imply that �′, �′ satisfy the assumptions
in (i), w ∈ A−

1 with an A−
1 -constant independent of 0<r<1.

Next, let r�1. An elementary calculation shows that

w(t) ∼
{

w̃�,�(t; r), t<r2

w̃�,0(t; r), t>r2

Then we will consider three cases.

Case 1: x<r2 and x + h<r2. In this case, by Part (i),

1

h

∫ x+h

x
w(t) dt ∼ 1

h

∫ x+h

x
w̃�,�(t; r) dt�cw̃�,�(x; r) ∼ cw(x)

with c>0 independent of r>1.
Case 2: x>r2 and x + h>r2. Now

1

h

∫ x+h

x
w(t) dt ∼ 1

h

∫ x+h

x
w̃�,0(t; r) dt�cw̃�,0(x; r) ∼ cw(x)

due to Case 1 in Part (i).
Case 3: x<r2 but x + h>r2. Then

1

h

∫ x+h

x
w(t) dt ∼ 1

h

∫ r2

x
w̃�,�(t; r) dt + 1

h

∫ x+h

r2
w̃�,0(t; r) dt

By Part (i), the first integral on the right-hand side is bounded by ((r2 − x)/h)w̃�,�(x; r)�
w̃�,�(x; r)�cw(x). Hence, it suffices to prove that

1

h

∫ x+h

r2
w̃�,0(t; r) dt�cw(x)

If |x |�r2, then Part (i) implies that

1

h

∫ x+h

r2
w̃�,0(t; r) dt� x + h − r2

h
w̃�,0(r

2; r)�w̃�,0(r
2; r)�cr2�

where r2��(r + |x |)��cw(x) since ��0��.
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If x< − r2, then w(x)∼ |x |�+�, and a simple scaling argument and the condition ��0 allow to
reduce the problem to the case r = 1. Actually, it suffices to show the existence of c>0 such that

J :=
∫ x+h

1
t� dt�ch|x |�+� when x� − 1, x + h�1

If �<−1, then J is bounded by (1/|� + 1|)�c|x |�+�+1�ch|x |�+�, since �+�>−1 and h>|x |>1.
In the case � = −1 the integral J equals

log(x + h) ∼ log h + x

h
�c

(
1 + hmin(�,1))�ch|x |�−1

since �>−1 − � = 0. Finally, for �>−1, we may bound J by c(x + h)�+1. If 1<|x |<h<2|x |,
this term is bounded by c|x |�ch|x |��ch|x |�+�. In the remaining case when h>2|x |, we get that
(x + h)�+1�ch�+1�ch|x |�+�, since ��0��.

Now (ii) is completely proved.
(iii) By Theorem 2.3 (i) and Part (ii) of this Lemma

w(x)= (1 + r2 + x2)�1/2

(1 + r2 + x2)�2(p−1)/2(1 + √
r2 + x2 − x)�2(p−1)

∈ A+
p

for all �1, �2, �2 satisfying −1<�1�0, �2�0��2 and �2+�2>−1. Hence, with � = �1−�2(p−1),
�= −�2(p−1), we get thatw =w�,�(· ; r) ∈ A+

p for all �, � satisfying �>−1, ��0 and �+�<p−1.
By analogy,

w(x)= (1 + r2 + x2)�1/2(1 + √
r2 + x2 − x)�1

(1 + r2 + x2)�2(p−1)/2
∈ A−

p

for all �1, �2, �1 satisfying �1�0��1, �1 + �1>−1, −1<�2�0. Hence, w =w�,�(· ; r) ∈ A−
p for

all �, � such that ��0, �<p − 1 and � + �>−1. Moreover, in both cases the A±
p -constant of the

weight is uniformly bounded in r>0. �

Note that the univariate weights w̃�,� and w�,� mainly differ for large x>0. While w̃0,� decays as
(1/x)� as x → ∞ for every fixed r>0, the weightw0,� is bounded below by 1 as x →∞. The reason
to consider the weights w�,� rather than w̃�,� is based on the use of the anisotropic weights ��

� on

R3, see Corollary 1.5, when fixing r = |(x1, x2)|, x1, x2 ∈ R, so that ��
�(x1, x2, x3) =w�,�(x3; r).

Due to the geometry of the problem we introduce cylindrical coordinates (r, x3, �) ∈ (0,∞) ×
R × [0, 2�) and write u(x1, x2, x3) = u(r, x3, �). Then the term (e3∧x)·∇u =−x2�1u+x1�2u may
be rewritten in the form (e3 ∧ x) · ∇u = ��u using the angular derivative �� applied to u(r, x3, �).
Working first of all formally or in the space S′(R3) of tempered distributions we apply the Fourier
transform F=̂to (5). With the Fourier variable � = (�1, �2, �3) ∈ R3 and s = |�| we get from (5)

(�s2 + ik�3)̂u − �̃(��û − e3 ∧ û) + i� p̂= f̂ , i� · û = 0 (16)

Here (e3∧�)·∇� = −�2�/��1+�1�/��2 = �� is the angular derivative in Fourier space when using
cylindrical coordinates (s, �3, , ) ∈ R+ × R × [0, 2�). Since i�·û = 0 implies i�·(��û−� ∧ û) = 0,
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the unknown pressure p is given by −|�|2 p̂= i� · f̂ , i.e.

∇̂ p(�) = i� · p̂= (� · f̂ ) f̂

|�|2
Then the Hörmander–Mikhlin multiplier theorem on weighted Lq -spaces (Theorem 2.2 (ii)) yields
for every weight w ∈ Aq(R

3,C) the estimate

‖∇ p‖q,w�c‖ f ‖q,w (17)

where c= c(q, w)>0; in particular ∇ p ∈ Lq
w.

Hence, u may be considered as a (solenoidal) solution of the reduced problem

−��u + k�3u − �̃(��u − e3 ∧ u) = F := f − ∇ p in R3 (18)

or—in Fourier space—

(�s2 + ik�3)̂u − �̃(��û − e3 ∧ û) = F̂

As shown in [1] this inhomogeneous linear differential equation of first order with respect to �
has the unique 2�-periodic solution

û(�) = 1

1 − e−2�(�|�|2+ik�3)/�̃

∫ 2�/�̃

0
e−(�|�|2+ik�3)t OT

�(t)FF(O�(t)�) dt

=
∫ ∞

0
e−�|�|2t OT

�(t)(FF(O�(t) · −kte3))(�) dt (19)

Finally, note that e−�|�|2t is the Fourier transform of the heat kernel Et (x)= (4��t)−3/2e−|x |2/4�t
yielding

u(x)=
∫ ∞

0
Et ∗ OT

�(t)F(O�(t) · −kte3)(x) dt (20)

Since F = f − ∇ p is solenoidal, the identity i� · F̂ = 0 easily implies that also u is solenoidal.
The main ingredients of the proof of Theorem 1.4 are a weighted version of Littlewood–Paley

theory and a decomposition of the integral operator

T f (x) =
∫ ∞

0
�̂�t (�)OT

�(t)F f (O�(t) · −kte3)(�)
dt

t

=
∫ ∞

0
�̂t (�)OT

�/�(t)F f

(
O�/�(t) · −k

�
te3

)
(�)

dt

t
(21)

where

�̂(�) = 1

(2�)3/2
|�|2e−|�|2 and �̂t (�) = �̂(

√
t�), t>0 (22)
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are the Fourier transforms of the function �= −�E1 ∈S(R3) and of �t (x)= t−3/2�(x/
√
t), t>0,

respectively. Note that due to Theorem 1.4 it suffices to find an estimate of ‖�u‖q,w in order to
estimate all second-order derivatives � j�ku of u.

To decompose �̂t choose �̃ ∈C∞
0 ( 12 , 2) satisfying 0�̃��1 and

∑∞
j=−∞ �̃(2− j s) = 1 for all s>0.

Then define � j , j ∈ Z, by its Fourier transform

�̂ j (�) = �̃(2− j |�|), � ∈ Rn

yielding
∑∞

j=−∞ �̂ j = 1 on Rn\{0} and
supp �̂ j ⊂ A(2 j−1, 2 j+1) := {� ∈ R3 : 2 j−1�|�|�2 j+1} (23)

Using � j , we define for j ∈ Z

� j = 1

(2�)3/2
� j ∗ � (�̂= �̂ j · �̂) (24)

Obviously,
∑∞

j=−∞ � j =� on R3. Finally, in view of (21), (24), we define the linear operators

Tj f (x) =
∫ ∞

0
�̂

j
�t (�)OT

�(t)F f (O�(t) · −kte3)(�)
dt

t

=
∫ ∞

0
�̂

j
t (�)OT

�/�(t)F f

(
O�/�(t) · −k

�
te3

)
(�)

dt

t
(25)

Since formally T =∑∞
j=−∞ Tj , we have to prove that this infinite series converges even in the

operator norm on Lq
w.

For later use we cite the following lemma, see [7].
Lemma 2.5
The functions � j , � j

t , j ∈ Z, t>0, have the following properties:

(i) supp �̂
j
t ⊂ A

(
2 j−1√

t
, 2 j+1√

t

)
(ii) Form> 3

2 let h(x)= (1+|x |2)−m and ht (x)= t−3/2h
(

x√
t

)
, t>0. Then there exists a constant

c>0 independent of j ∈ Z such that

|� j (x)| � c2−2| j | h2−2 j (x), x ∈ R3

‖� j‖1 � c2−2| j | (26)

To introduce a weighted Littlewood–Paley decomposition of Lq
w choose �̃∈C∞

0 ( 12 , 2) such that
0��̃�1 and

∫∞
0 �̃(s)2 ds/s = 1

2 . Then define �∈S(R3) by its Fourier transform �̂(�) = �̃(|�|)
yielding for every s>0

�̂s(�) = �̃(
√
s|�|), supp �̂s ⊂ A

(
1

2
√
2
,

2√
2

)
(27)

and the normalization
∫∞
0 �̂s(�)2ds/s = 1 for all � ∈ Rn\{0}.
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Theorem 2.6
Let 1<q<∞ and w ∈ Aq(R

3). Then there are constants c1, c2>0 depending on q, w and � such
that for all f ∈ Lq

w

c1‖ f ‖q,w�
∥∥∥∥∥
(∫ ∞

0
|�s ∗ f (·)|2 ds

s

)1/2
∥∥∥∥∥
q,w

�c2‖ f ‖q,w (28)

where �s ∈S(Rn) is defined by (27).

Proof
See [21, Proposition 1.9, Theorem 1.10], and also [19, 22]. �

3. PROOFS

As a preliminary version of Theorem 1.4 we prove the following proposition. The extension to
more general weights based on complex interpolation of Lq

w-spaces will be postponed to the end
of Section 3.

Proposition 3.1
Let the weight w ∈ L1

loc(R
3) be independent of the angle � and define wr (x3) :=w(x1, x2, x3) for

fixed r = |(x1, x2)|>0. Assume that

w ∈ Ã−
q/2 if q>2

w ∈ Ã−
1 or

1

w
∈ Ã+

1 if q = 2

w2/(2−q) ∈ Ã−
q/(2−q) if 1<q<2

(29)

Then the linear operator T defined by (21) satisfies the estimate

‖T f ‖q,w�c‖ f ‖q,w for all f ∈ Lq
w (30)

with a constant c= c(q, w)>0 independent of f .

Proof
Step 1: First we consider the case q>2, w ∈ Ã−

q/2 ⊂ Aq , and define the sublinear operator M j , a
modified maximal operator, by

M j g(x)= sup
s>0

∫
As

(|� j
t | ∗ |g|)

(
OT

�/�(t)x + k

�
te3

)
dt

t
(31)

where As =[s/16, 16s]. Then we will prove the preliminary estimate

‖Tj f ‖q,w�c‖� j‖1/21 ‖M j‖1/2
L(q/2)′

v

‖ f ‖q,w, j ∈ Z (32)

where v denotes the �-independent weight

v =w−(q/2)′/(q/2) =w−2/(q−2) ∈ Ã+
(q/2)′ = Ã+

q/(q−2) (33)
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To prove (32) we use the Littlewood–Paley decomposition of Lq
w, see (28), applied to Tj f . By

a duality argument we find some function 0�g ∈ L(q/2)′
v = (L(q/2)

w )∗ with ‖g‖(q/2)′,v = 1 such that∥∥∥∥∫ ∞

0
|�s ∗ Tj f (·)|2 ds

s

∥∥∥∥
q/2,w

=
∫ ∞

0

∫
R3

|�s ∗ Tj f (x)|2g(x) dx ds
s

(34)

To estimate the right-hand side of (34) note that

�s ∗ Tj f (x)=
∫ ∞

0
OT

�/�(t)(�s ∗ � j
t ∗ f )

(
O�/�(t)x − k

�
te3

)
dt

t

where �s ∗ � j
t = 0 unless t ∈ A(s, j) := [22 j−4s, 22 j+4s]. Since ∫t ∈ A(s, j) dt/t = log 28 for every

j ∈ Z, s>0, we get by the inequality of Cauchy–Schwarz and the associativity of convolutions that

|�s ∗ Tj f (x)|2 � c
∫
A(s, j)

∣∣∣∣(� j
t ∗ (�s ∗ f ))

(
O�/�(t)x − k

�
te3

)∣∣∣∣2 dtt
� c‖� j‖1

∫
A(s, j)

(|� j
t | ∗ |�s ∗ f |2)

(
O�/�(t)x − k

�
te3

)
dt

t

here we used the estimate |(� j
t ∗ (�s ∗ f ))(y)|2�‖� j

t ‖1(|� j
t | ∗ |�s ∗ f |2)(y) and the identity

‖� j
t ‖1 =‖� j‖1, see (26). Thus,

|Tj f ‖2q,w

�c‖� j‖1
∫ ∞

0

∫
A(s, j)

∫
R3

(|� j
t | ∗ |�s ∗ f |2)

(
O�/�(t)x − k

�
te3

)
g(x) dx

dt

t

ds

s

�c‖� j‖1
∫ ∞

0

∫
A(s, j)

∫
R3

(|� j
t | ∗ |�s ∗ f |2)(x)g

(
OT

�/�(t)x + k

�
te3

)
dx

dt

t

ds

s

�c‖� j‖1
∫

R3

∫ ∞

0
|�s ∗ f |2(x)

∫
A(s, j)

(|� j
t | ∗ g)

(
OT

�/�(t)x + k

�
te3

)
dt

t

ds

s
dx (35)

since � j
t is radially symmetric. By definition of M j the innermost integral is bounded by M j g(x)

uniformly in s>0. Hence, we may proceed in (35) using Hölder’s inequality as follows:

‖Tj f ‖2q,w � c‖� j‖1
∫

R3

(∫ ∞

0
|�s ∗ f |2(x)ds

s

)
M j g(x) dx

� c‖� j‖1
∥∥∥∥∫ ∞

0
|�s ∗ f |2(x) ds

s

∥∥∥∥
q/2,w

‖M j g‖(q/2)′,v (36)

Now (28) and the normalization ‖g‖(q/2)′,v = 1 complete the proof of (32).
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Step 2: We estimate ‖M j g‖(q/2)′,v . For functions 
 depending on �, x3 only let Mhel denote
the ‘helical’ maximal operator

Mhel
(�, x3) = sup
s>0

1

s

∫
As

|
|
(

� − �

�
t, x3 + k

�
t

)
dt

where As =[s/16, 16s]. Then, writing p := (q/2)′, we claim that

M j g(x) � c2−2| j |M(Mhelg)(x) for a.a. x ∈ Rn (37)

‖M j g‖p,v � c2−2| j |‖g‖p,v (38)

where in (37) Mhelg is considered as Mhelg(r, ·, ·) for almost all r>0.
To prove (37) we use the pointwise estimate |� j

t (x)|�c2−2| j |ht2−2 j (x), see Lemma 2.5(ii).
Hence,

M j g(x)�c2−2| j | sup
s>0

∫
As

(ht2−2 j ∗ |g|)
(
OT

�/�(t)x + k

�
te3

)
dt

t

Moreover, there exists a constant c>0 independent of s>0, j ∈ Z, such that ht2−2 j�chs2−2 j for all
t ∈ As . Consequently,

M j g(x) � c2−2| j | sup
s>0

hs2−2 j ∗
∫
As

|g|
(
OT

�/�(t)x + k

�
te3

)
dt

t

� c2−2| j | sup
t>0

ht ∗ Mhelg(x)

Since h is nonnegative, radially decreasing, and ‖ht‖1 = ‖h‖1 = c0>0 for all t>0, a well-known
convolution estimate, see [23, II Section 2.1], yields the pointwise estimate (37).

Step 3: Note that up to now we have not yet used any specific properties of the weight v ∈ Ap. To
estimateMhelg, we shall work with a suitable one-sided maximal operator since our weight belongs
to a Muckenhoupt class in R3 but a problem occurs when the weight is considered with respect
to x3 only. This naturally corresponds to the physical circumstances of the problem, where in the
Oseen case the wake should appear. To estimate Mhelg, we write gr (�, x3) = g(r, �, x3) = g(x)
and vr (x3) = v(x), r = |(x1, x2)|>0, for the �-independent weight v. Then by the 2�-periodicity
of gr and vr with respect to � we get for almost all r>0∫

R

∫ 2�

0
Mhelgr (�, x3)

pvr (x3) d� dx3

�
∫

R

∫ 2�

0

∣∣∣∣∣sups>0

1

s

∫ 16s

0
|gr |

(
� − �

k

(
x3 + k

�
t

)
, x3 + k

�
t

)
dt

∣∣∣∣∣
p

vr (x3) d� dx3

=
∫

R

∫ 2�

0

∣∣∣∣∣sups>0

1

s

∫ 16s

0

r,�

(
x3 + k

�
t

)
dt

∣∣∣∣∣
p

d�vr (x3) dx3

= 16
∫ 2�

0

∫
R

|M+
r,�(x3)|pvr (x3) dx3 d�
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where 
r,�(y3) = |gr |(� − (�/k)y3, y3) and M+ denotes the one-sided maximal operator, see

Definition 1.2. Since wr ∈ A−
q/2, by (33) and Theorem 2.3(i) vr =w

−(q/2)′/(q/2)
r ∈ A+

(q/2)′ = A+
p

with an A+
p -constant uniformly bounded in r>0. Then Theorem 2.3(ii) yields the estimate∫

R

∫ 2�

0
Mhelgr (�, x3)

pvr (x3) d� dx3

�c
∫ 2�

0

∫
R

|
r,�(x3)|pvr (x3) dx3 d� = c‖gr‖p
L p(R × (0,2�),vr (x3))

where c>0 is independent of k, �. Integrating with respect to r dr , r ∈ (0,∞), Fubini’s theorem
allows to consider an extension ofMhel to a bounded operator from L p

v (R3) to itself with an operator
norm bounded uniformly in k, �. Moreover,M : L p

v (R3) → L p
v (R3) is bounded by Theorem 2.3(ii).

Hence, (37) implies (38), and by (32) as well as Lemma 2.5(ii) we get the estimate

‖Tj f ‖q,w�c2−2| j |‖ f ‖q,w

for all f ∈ Lq
w(R3) with a constant c>0 independent of j ∈ Z. Summarizing the previous inequal-

ities we proved (30) for q>2.
Step 4: Now let q = 2, w ∈ Ã−

1 . In this case, the Littlewood–Paley decomposition of Tj f in L2
w

implies that

‖Tj f ‖22,w�c
∫ ∞

0

∫
Rn

|�s ∗ Tj f |2(x)g(x) dx ds

s

where

g ∈ L∞
v , v = 1

w
and ‖g‖∞,v = ess supR3 |gv| = 1

By the same reasoning as before we arrive at (32), i.e.

‖Tj f ‖2,w�c2−| j |‖M j g‖1/2∞,v‖ f ‖2,w (39)

and at (37). Concerning Mhel we use the pointwise estimate gr (�, x3)�wr (x3) for a.a. � ∈ (0, 2�),
x3 ∈ R, and get that

Mhelgr (�, x3)� sup
s>0

1

s

∫ 16s

0
wr

(
x3 + k

�
t

)
dt�16M+wr (x3)�cwr (x3)

with a constant c>0 independent of r>0. Since w is an A1(R
3)-weight, (37) implies that

M j g(x)�c2−2| j |Mw(x)�c2−2| j |w(x)

and consequently that ‖M j g‖∞,v�c2−2| j | with a constant c>0 independent of j ∈ Z. Hence,
‖Tj f ‖2,w�c2−2| j | proving (30) when q = 2.

Step 5: The remaining estimates are proved by duality arguments. Obviously, the dual operator
to T is defined by

T ∗ f (x)=
∫ ∞

0
(−�)O�(t)Et ∗ f (OT

�(t)x + kte3) dt
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which has the same structure as K , but with an ‘opposite orientation’. Hence, T ∗ is bounded on
Lq

w for q�2 and all weights w ∈ Ã+
q/2. Now let 1<q<2 and w2/(2−q) ∈ Ã−

q/(2−q) = Ã−
(q ′/2)′ . Then

by simple duality arguments w′ =w−q ′/q ∈ Ã+
(q ′/2) and

|〈T f, g〉| = |〈 f, T ∗g〉|�‖ f ‖q,w‖T ∗g‖q ′,w′�c‖ f ‖q,w‖g‖q ′,w′

Finally, let q = 2 and 1/w ∈ Ã+
1 . As before,

|〈T f, g〉|�‖ f ‖2,w‖T ∗g‖2,1/w�c‖ f ‖2,w‖g‖2,1/w
Now Proposition 3.1 is completely proved. �

Lemma 3.2 (Bergh and Löfström [24])
Let 1�p1, p2<∞, let 0<w1, w2 be weight functions, � ∈ (0, 1), and

1

p
= 1 − �

p1
+ �

p2
, w1/p =w

(1−�)/p1
1 · w

�/p2
2

Then

[L p1
w1

, L p2
w2

]� = L p
w

in the sense of complex interpolation.

In the following, we shall derive an anisotropic variant of Jones’s factorization theorem tailored
to our situation, when we need to work with one-sided Muckenhoupt weights with respect to x3,
satisfying the usual Muckenhoupt condition in three dimensions.

Lemma 3.3 (Anisotropic version of Jones’ factorization theorem)
Suppose that w ∈ Ã−

q . Then there exist weights w1 ∈ Ã−
1 and w2 ∈ Ã+

1 such that

w = w1

w
q−1
2

Here Ã+
1 is defined by analogy with Ã−

1 , cf. Definition 1.2, by assuming for w2 ∈ Ã+
1 that

(w2)r ∈ A+
1 with A+

1 -constant uniformly bounded in r>0. An analogous result holds for w ∈ Ã+
q .

Proof
Let q�2. Given w ∈ Ã−

q we consider the operator T defined by

T f = (w−1/qM( f q/q ′
w1/q))q

′/q + w1/qM( f w−1/q)

+ (w−1/qM+
1 ( f q/q ′

r w
1/q
r ))q

′/q + w1/qM−
1 ( frw

−1/q
r )

where r = |(x1, x2)|. Then for all f ∈ Lq(R3)

‖T f ‖qq � c

{∫
R3

w−q ′/q(M( f q/q ′
w1/q))q

′
dx +

∫
R3

w(M( f w−1/q))q dx

+
∫

R2

(∫
R

w
−q ′/q
r (M+

1 ( f q/q ′
r w

1/q
r ))q

′
dx3

)
d(x1, x2)
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+
∫

R2

(∫
R

wr (M
+
1 ( frw

−1/q
r ))q dx3

)
d(x1, x2)

}
� Aq‖ f ‖qq

with a constant A= A(q, w)>0.
Let us fix a nonnegative �-independent function f ∈ Lq(R3) with ‖ f ‖q = 1 and define

� =
∞∑
k=1

(2A)−kT k( f )

where T k( f ) = T (T k−1( f )). Obviously, T f and therefore also � are �-independent. Moreover,
� ∈ Lq(R3) and ‖�‖q�∑∞

k=1 2
−k = 1. In particular, �(x)<∞ for a.a. x ∈ R3, �r (·) ∈ Lq(R) for

a.a. (x1, x2) ∈ R2 and �r (x3)<∞ for a.a. x3 ∈ R. Since T is subadditive and positivity-preserving,
we get the pointwise inequality

T��
∞∑
k=1

(2A)−kT k+1( f ) =
∞∑
k=2

(2A)1−kT k( f )�(2A)�

Now let w1 :=w1/q�q/q ′
and w2 :=w−1/q� such that w =w1/w

q−1
2 . Then

M(w1)�w1/q(T�)q/q ′�w1/q�q/q ′
(2A)q/q ′ = (2A)q/q ′

w1

M+
1 ((w1)r )�w1/q(T�)q/q ′�w1/q�q/q ′

(2A)q/q ′ = (2A)q/q ′
(w1)r

M(w2)�w−1/qT (�)�w−1/q�2A = 2Aw2

M−
1 ((w2)r )�w−1/qT (�)�w−1/q�2A = 2A(w2)r

proving that w1 ∈ Ã−
1 , w2 ∈ Ã+

1 .
The case 1�q<2 follows by a simple duality argument, since w ∈ Ã−

q is equivalent to

w−q ′/q ∈ Ã+
q ′ . �

Proof of Theorem 1.4
(i) Let q ∈ (1,∞) and w ∈ Aq such that the Lq

w-estimate of ∇ p holds, see (17). Hence, it suffices
to consider u defined by (19)–(20). We consider arbitrary q1, q2 ∈ (1, ∞) and � ∈ (0, 1) with

1<q1<q<q2<∞, q1�2�q2 and
1

q
= 1 − �

q1
+ �

q2
(40)

and assume that w� ∈ Ã−
�q/2 with � = 2/(2 − q(1 − �))∈ [1, ∞). By Lemma 3.3 there exist weights

u ∈ Ã−
1 , v ∈ Ã+

1 such that

w� = u

v�q/2−1
= u

vq/(2−q(1−�))−1

Then we define the weights w1, w2 by

w
2/(2−q1)
1 = u

v2(q1−1)/(2−q1)
and w2 = u

v(q2−2)/2
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yielding

w
2/(2−q1)
1 ∈ Ã−

q1/(2−q1)
, w2 ∈ Ã−

q2/2

Since, due to an elementary calculation, with w =w
q(1−�)/q1
1 · w

q�/q2
2 , Lemma 3.3 and

Proposition 3.1 we can prove that T is bounded on Lq
w(R3). Since u1 ∈ Ã−

1 , v1 ∈ Ã+
1 are ar-

bitrary, we proved the boundedness of T on Lq
w for arbitrary w if

w� ∈ Ã−
�q/2, � = 2

2 − q(1 − �)
∈ [1,∞)

Now we have to find all admissible � subject to the restrictions given by (40). For this reason,
consider the easier term

s = 2

(
1 − 1

�

)
= q(1 − �) = q

1/q − 1/q2
1/q1 − 1/q2

First Case 1<q<2, in which 1<q1<q and q2�2. Due to monotonicity properties of s as a
function of 1/q1 and of 1/q2 it suffices to check s at the corners of the rectangle (1/q, 1) × (0, 1

2 ].
The corresponding function values are q, 1 and 2 − q. Hence, the range of s equals the interval
(2 − q, q) yielding for � = 2/(2 − s) the condition

2

q
<�<

2

2 − q

Note that the limiting value � = 2/(2 − q) is allowed due to Proposition 3.1. Finally, the
condition w� ∈ Ã−

�q/2, 2/q<��2/(2 − q), easily implies that w ∈ Aq : By Lemma 3.3, there exist

u1 ∈ Ã−
1 , v1 ∈ Ã+

1 such that

w = u1/�1

v
q/2−1/�
1

(41)

where u1/�1 ∈ Ã−
1 and q/2 − 1/��q − 1 yielding v

(q/2−1/�)/(q−1)
1 ∈ Ã+

1 .
Second Case q>2, in which 1<q1�2 and q2>q. In this case, the values of s at the corners of

the rectangle [ 12 , 1)× (0, 1/q) in the (1/q1, 1/q2)-plane are 0, 1 and 2. Hence,

1<�<∞
and we observe that � = 1 is admissible due to Proposition 3.1. Finally, note that the condition
w� ∈ A�q/2 implies also w ∈ Ã−

q : there exist u1 ∈ Ã−
1 , v1 ∈ Ã+

1 such that w satisfies (41), where
again q/2 − 1/� + 1�q for all � ∈ (1,∞).

Third Case q = 2. In this case it suffices to interpolate between L2
w1

and L2
w2
, where w1 ∈ Ã−

1
and 1/w2 ∈ Ã+

1 , see Proposition 3.1. Then T is bounded on L2
w for all

w = w1−�
1

w�
2

, 0<�<1
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Then w1/(1−�) =w1/w
�/(1−�)

2 , or with � = 1
1−� ∈ (1, ∞),

w� = w1

w�−1
2

∈ Ã−
� = Ã−

�q/2

(ii) Note that Lqi
wi (R

n) ⊂ S′(Rn), i = 1, 2; indeed, wi ∈ L1
loc(R

n) and
∫
|x |�1 wi (x)|x |−nqi dx<∞,

see [17, IV.3 (30)]. Since Equation (5) is linear, it suffices to consider f = 0 and a solution
u ∈ S′(Rn)n of (8). In the proof of [7], Theorem 1.1 (2), (3), it was shown that under these
assumptions u is a polynomial and that u(x)= �� + �� ∧ x + 
(x1, x2, −2x3)T, �, �, 
∈ R

(u(x)= �(−x2, x1) if n = 2). �

Proof of Corollary 1.5
Considering a priori estimates for �u/�x3 we use representation (19) of u. In order to analyse the
dependence of the following estimates on the parameters k, � and �̃ let

k′ = k/�̃, �′ = �/�̃ and D(�) = 1 − e−2�(�′|�|2+ik′�3)

Then for f ∈S(R3)3 we get the identity

̂k�3u(�) = ik′�3
D(�)

∫ 2�

0
e−(�′|�|2+ik′�3)t OT

e3(t) F̂(Oe3(t)�) dt (42)

where F = f −∇ p, see (18). Choose a cut-off function � ∈C∞
0 (B1(0))with �(�) = 1 for � ∈ B1/2(0)

and define the multiplier functions

m0(�) = ik′�3��′(�)

D(�)
, m1(�) = k′

√
�′
1 − ��′(�)

D(�)

where ��′(�) = �(
√

�′�), as well as

	0,t (�) = e−(�′|�|2+ik′�3)t , 	1,t (�) = i�3
√

�′e−(�′|�|2+ik′�3)t , t ∈ (0, 2�)

Then we get

̂k�3u(�) =m0(�) Î0(�) + m1(�) Î1(�)

where I0(x), I1(x) are defined by their Fourier transforms

Î0(�) =
∫ 2�

0
	0,t (�)OT

e3(t)F̂(Oe3(t)·)(�) dt

Î1(�) =
∫ 2�

0
	1,t (�)OT

e3(t)F̂(Oe3(t)·)(�) dt

Concerning the multiplier function 	0,t we note that e.g.∣∣∣∣∣�3 �	0,t
��3

∣∣∣∣∣= |(−2�′t�23 − ik′t�3)e−(�′|�|2+ik′�3)t |
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�C

(
�′t |�|2 + k′

√
�′

√
�′t |�3|

)
e−�′|�|2t

�C

(
1 + k′

√
�′

)

with a constant C>0 independent of � �= 0, t ∈ (0, 2�), k′>0 and �′>0. Then it is easily seen that
	0,t , 	1,t satisfy the pointwise multiplier estimates

sup
t∈(0,2�)

max
�

sup
� �=0

(|��D�
�	0,t (�)| + √

t |��D�
�	1,t (�)|)�C

(
1 + k√

�|�|
)

uniformly in k′>0 and �′>0, where � ∈ N3
0 runs through the set of all multi-indices � ∈ {0, 1}3.

Hence, Theorems 2.2(iii) and (17) show that

‖I0‖q,w � c

(
1 + k√

�|�|
)∫ 2�

0
‖F(Oe3(t)·)‖q,w dt�c

(
1 + k√

�|�|
)

‖ f ‖q,w

‖I1‖q,w � c

(
1 + k√

�|�|
)∫ 2�

0

1√
t
‖F(Oe3(t)·)‖q,w dt�c

(
1 + k√

�|�|
)

‖ f ‖q,w

where c>0 is independent of k, � and �. Moreover, a lengthy, but elementary calculation proves
that m0,m1 satisfy the pointwise estimates

max
j=0,1

max
�

sup
� �=0

|��D�
�m j (�)|�C

(
1 + k4

�2|�|2
)

with c>0 independent of �, �, k; for details see [1]. Now another application of Theorem 2.2(iii)
yields the estimate

‖k�3u‖q,w�c

(
1 + k5

�5/2|�|5/2
)

‖ f ‖q,w

for f ∈ S(R3)3, with a constant c>0 independent of f, k, � and �. Since S(R3) is dense in Lq
w(R3),

this result extends to all f ∈ Lq
w; for its proof we refer to [1]. However, note that we did not estimate

F̂(O�(t) · −kte3)� in Lq(�) as in [1]; instead we have to deal with F̂(Oe3(t)·), and the shift
operator is estimated with the help of multipliers.

Now Corollary 1.5 is completely proved. �

Proof of Corollary 1.6
We have to check for which �, � the weight w(x)= ��

�(x)= (1 + |x |)�(1 + s(x))� satisfies the
conditions needed in Theorem 1.4. From [16] and [25, Theorem 5.2] we know that w = ��

� ∈ Ap,
1<p<∞, if and only if −1<�<p − 1 and −3<� + �<3(p − 1); moreover, by Lemma 2.4(iii)
we have to satisfy the conditions �<p − 1, ��0, � + �>−1 to get that wr (·) ∈ A−

p .

Copyright q 2007 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:551–574
DOI: 10.1002/mma



A WEIGHTED Lq -APPROACH TO OSEEN FLOW 573

Let q>2. Then in view of (8) and (15) we have to analyse the convex set

C=
{
(�, �); �<

q

2
− 1

�
, ��0, � + �> − 1

�
, −1

�
<�<

q

2
− 1

�
,

−3

�
<� + �<

3q

2
− 3

�
for some � ∈ [1, ∞)

}
Obviously, the conditions �> − 1/� and −3/�<� + �<3q/2− 3/� are redundant since q/2− 1/�
is positive; moreover, the conditions � + �> − 1/� and �<q/2− 1/� yield �> − q/2. We will see
that

C=
{
(�, �);−q

2
<�<

q

2
, 0��<

q

2
, � + �>−1

}
Indeed, it suffices to consider pairs (�, �) with �<0. If moreover � + �<0, we find �0>1 such
that � + �=−1/�0. Then � =−1/�0 − �< − 1/�0 + q/2 and �<0<q/2 − 1/�0; consequently
(�, �) ∈C. If � + ��0, we may choose � sufficiently large to show that (�, �) ∈C.

Now consider the case 1<q<2. As in the previous case we have to analyse the set C where now
� runs in the interval (2/q, 2/(2 − q)]. Since �>2/q, the same conditions as before are redundant;
moreover, �>−q/2. Then we will show that

C=
{
(�, �);−q

2
<�<q − 1, 0��<q − 1, � + �> − q

2

}
Indeed, if e.g. �<0 and � + ��q/2 − 1<0, then there exists �0 ∈ (2/q, (2 − q)/2] such that
�+�= −1/�0, �=−1/�0−�<−1/�0+q/2 and �<0<q/2−1/�0; however, when �+�>q/2−1,
we may choose �= 2/(2 − q) to see that (�, �) ∈C. �
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Anisotropic L
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Oseen-type equations in 3D-exterior domain

for a rotating body
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Abstract. We study the Oseen problem with rotational effect in exterior

three-dimensional domains. Using a variational approach we prove existence and

uniqueness theorems in anisotropically weighted Sobolev spaces in the whole

three-dimensional space. As the main tool we derive and apply an inequality of
the Friedrichs-Poincaré type and the theory of Calderon-Zygmund kernels in

weighted spaces. For the extension of results to the case of exterior domains we

use a localization procedure.

1. Introduction.

1.1. Formulation of the problem.

In a three-dimensional exterior domain � � R3, the classical Oseen problem

[30] describes the velocity vector v and the associated pressure � by a linearized

version of the incompressible Navier-Stokes equations as a perturbation of v1 the

velocity at infinity; v1 is generally assumed to be constant in a fixed direction,

say the first axis, v1 ¼ jv1je1. In the next we denote jv1j by k, and we will write

the Oseen operator k @1v. On the other hand it is known that for various flows past

a rotating obstacle, the Oseen operator appears with some concrete non-constant

coefficient functions, e.g. aðxÞ ¼ !� x, where ! is a given vector, see [17], [29]; in

view of industrial applications aðxÞ can also play the role of an ‘‘experimental’’

known velocity field, see [20].

This paper is devoted to the study of the following problem in � for (non-

solenoidal) vector function u ¼ uðxÞ and scalar function p ¼ pðxÞ:

���u þ k@1u � !� xð Þ � ru þ !� u þrp ¼ f in � ð1.1Þ
divu ¼ g in � ð1.2Þ

u ! 0 as xj j ! 1 ð1.3Þ
u ¼ !� xð Þ � ke1 on @�; ð1.4Þ
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where ! ¼ ðe!; 0; 0Þ is a constant vector, �, k and e! are some positive constants,

and f ¼ f ðxÞ a given vector function, g ¼ gðxÞ a given scalar function.

We restrict ourselves to the assumption of compact support of g when � is an

exterior domain. The system arises from the Navier-Stokes system modelling

viscous fluid around a rotating body which is moving with a given non-zero

velocity in the direction of its axis of rotation. An appropriate coordinate

transform and a linearization yield in the stationary case equations (1.1) and

(1.2), for details see [3], [17]. The third term together with the fourth one (the

Coriolis force !� u) in (1.1) arise from the influence of rotation of the body.

Let us begin with some comments and relevant process of analysis of the

problem (1.1)–(1.4).

. The governing equations of fluid motion are stationary and linear, but in

unbounded domains the convective operators, k @1 and ð!� xÞ � r, cannot

be treated as perturbations of lower order of the Laplacian.

. The fundamental tensor (similarly as the fundamental tensor to the Oseen

problem) exhibits the anisotropic behavior in the three-dimensional space.

To reflect the decay properties near the infinity we introduce the following

weight functions:

��� xð Þ ¼ ��;��;" xð Þ ¼ 1þ �rð Þ� 1þ "sð Þ�;

with r ¼ rðxÞ ¼ jxj ¼ ðP3
i¼1 x

2
i Þ

1=2, s ¼ sðxÞ ¼ r� x1, x 2 R3, "; � > 0,

�; � 2 R. Discussing the range of the exponents � and �, the corresponding

weighted spaces LqðR3; ��� Þ give the appropriate framework to test the

solutions to (1.1)–(1.3). This paper is concerned with q ¼ 2. Let us mention

also that ��� belongs to the Muckenhoupt class A2 of weights in R3 if

�1 < � < 1 and �3 < �þ � < 3.

. In this paper we will prefer the variational approach. To avoid the

difficulties with the pressure part of the solution p we solve firstly the

problem in R3. Using the theory of Calderon-Zygmund integrals in

corresponding weighted spaces, we determine the pressure p of the problem

in R3 to be from the same space as the right-hand side of (1.1). This first

step cannot be done directly in an exterior domain. Then we apply the

variational approach for the velocity part of the solution.

. For the extension of the results to the case of exterior domains we use the

localization procedure, see [22].
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1.2. Short bibliographical remarks.

The weighted estimates of the solution to the stationary classical Oseen

problem were firstly obtained by Finn in 1959, see [9]. The variational approach to

the model equation ���uþ k@1u ¼ f in an exterior domain in anisotropically

weighted L2-spaces was applied by Farwig, see [1]. The same variational

viewpoint has been also applied in [27], [28] by Kračmar and Penel to solve the

generic scalar model equation ���uþ k@1u� a � ru ¼ f with a given non-

constant and, in general, non-solenoidal vector function a in an exterior domain.

Both model equations are assumed with boundary conditions u ¼ 0 on @� and

u! 0 as jxj ! 1.

Another common approach to study the asymptotic properties of the

solutions to the Dirichlet problem of the classical steady Oseen flow is the use of

the potential theory, i.e. convolutions with Oseen fundamental tensor and its first

and second gradients for the velocity (or with the fundamental solution of Laplace

equation for the pressure): the L2-estimates in anisotropically weighted Sobolev

spaces in R3 were derived by Farwig [2], the Lq-estimates in these spaces were

proved in R3 and Rn by Kračmar, Novotný and Pokorný in [25] and [26],

respectively. Different approach was used by Kobayashi and Shibata [21].

The fundamental solution to rotating Oseen problem in the time dependent

case is known due to Guenther and Thomann, see [32], but, unfortunately, the

respective stationary kernel does not seem to be of Calderon-Zygmund type. The

Littlewood-Paley decomposition technique offers another approach for an Lq-anal-

ysis: Thus, Lq-estimates in non-weighted spaces were derived for the rotating

Stokes problem by Hishida [17], by Farwig, Hishida, and Müller [5], and for the

rotating Oseen problem in R3 by Farwig [3], [4]. Lq-estimates of the pressure and

the gradient of the velocity for the exterior Stokes flow around a rotating body

without translation were derived in [19]. Lq-setting with non-integrable right-

hand side in non-homogeneous case was investigated by Kračmar, Nečasová and

Penel in [24]. The Littlewood-Paley decomposition technique for Lq-weighted

estimates with anisotropic weight functions was used by Farwig, Krbec and

Nečasová [7], [8].

Another approach based on the use of the non-stationary equations in both

the linear and also non-linear cases is proposed by Galdi and Silvestre in [11],

[12], [13], [14]. The last paper showed the existence of the wake region for the

Navier-Stokes flow for small data.

We would like also to mention that the problem was solved by the semigroup

theory in L2-setting in particular by Hishida [18], and then the respective results

were extended to Lq case by Geissert, Heck and Hieber [15].
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1.3. Basic notations and elementary properties.

Let us outline our notations. Let S
0 be the space of the moderate

distributions in R3. Let � be an exterior domain with a boundary of the class

C
2, and

bWm;qð�Þ ¼ fu 2 L1
loc
ð�Þ : Dlu 2 Lqð�Þ; jlj ¼ mg

with the seminorm jujm;q ¼ ð
P

jlj¼m
R
�
jujqÞ1=q. It is known that bWm;qð�Þ is a

Banach space (and if q ¼ 2 the space bHmð�Þ ¼ bWm;2ð�Þ a Hilbert space), provided

we identify two functions u1, u2 whenever ju1 � u2jm;q ¼ 0, i.e. u1, u2 differ (at

most) on a polynomial of the degree m� 1. As usual, we denote by bWm;q
0 ð�Þ the

closure of C1
0 ð�Þ in bWm;qð�Þ.

Let ðL2ð�; wÞÞ3 be the set of measurable vector functions f ¼ ðf1; f2; f3Þ in �

such that

fk k22;�;w¼
Z

�

fj j2wdx <1:

We will use the notation L2
�;�ð�Þ instead of ðL2ð�; ��� ÞÞ

3 and k � k2;�;� instead of

k � kðL2ð�; ��
�
ÞÞ3 . Let us define the weighted Sobolev space H 1ð�; ��0

�0
; ��1

�1
Þ as the set

of functions u 2 L2
�0;�0

ð�Þ with the weak derivatives @iu 2 L2
�1;�1

ð�Þ. The norm of

u 2 H 1ð�; ��0

�0
; ��1

�1
Þ is given by

uk k
H 1 �; ��0

�0
;��1
�1

� �¼
Z

�

uj j2��0

�0
dx þ

Z

�

ruj j2��1

�1
dx

� �1=2

:

As usual, H
�

1ð�; ��0

�0
; ��1

�1
Þ, will be the closure of C1

0 ð�Þ in H 1ð�; ��0

�0
; ��1

�1
Þ, where

C1
0 ð�Þ is ðC1

0 ð�ÞÞ3, and H
�

1ð�; ��0

�0
; ��1

�1
Þ will be the closure of C1

0 ð�Þ in

H 1ð�; ��0

�0
; ��1

�1
Þ.

For simplicity, we shall use the following abbreviations:

L2
�;� �ð Þ instead of L2 �; ���

� �� �3

�k k2;�;�; � instead of �k kðL2ð�; ��
�
ÞÞ3

H
�

1
�; � �ð Þ instead of H

�
1ð�; ���1

��1 ; �
�
� Þ

V�;� �ð Þ instead of H
�

1ð�; ���1
� ; ��� Þ

V�;� �
� �

instead of H
�

1ð�; ���1
� ; ��� Þ:
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We shall use these last two Hilbert spaces for � � 0, � > 0, �þ � < 3. If no

confusion can occur, we omit the domain in the notation of the norm k � k2;�;�; �.
The notation H 1ð�Þ and H

�
1ð�Þ mean, as usual, the non-weighted spaces

ðH1ð�; 1; 1ÞÞ3 and ðH
�
1ð�; 1; 1ÞÞ3, respectively. As usual, omitting the domain �

in the notation of spaces will indicate that � ¼ R3, so e.g. H 1 ¼ H 1ðR3Þ.
Concerning the weight functions ��� , we will use two notations ��� ðxÞ and

��;��;"ðxÞ taking the advantages of the following remark:

REMARK 1.1. Let us note that for ��;��;" and for any �1; �2; "1; "2 > 0 one has

cmin � ��;�2�;"2
� ��;�1�;"1

� cmax � ��;�2�;"2
;

cmin ¼ minð1; ð�1=�2Þ�Þ�minð1; ð"1="2Þ�Þ, cmax ¼ maxð1; ð�1=�2Þ�Þ�maxð1; ð"1="2Þ�Þ.
The parameters � and " are useful to re-scale separately the isotropic and

anisotropic parts of the weight function ��� .

We also use the notation of sets BR ¼ fx 2 R3; jxj � Rg, BR ¼
fx 2 R3; jxj � Rg, �R ¼ BR \ �, �R ¼ BR \ �, BR1

R2
¼ BR1 \BR2

, �R1

R2
¼ BR1

R2
\ �,

for positive numbers R, R1, R2.

1.4. Main results.

In the first part of the paper (chapters 2–4) we study the problem in R3. Let

us assume for a moment that pressure p is known. In solving the problem (1.1)–

(1.3) with respect to u and p by means of a pure variational approach, we shall

deal with the following equation:

�

Z

R3

ruj j2wdx þ �

Z

R3

u � rð Þu � rwdx � k

2

Z

R3

uj j2@1wdx

� 1

2

Z

R3

uj j2div w !� x½ �ð Þdx ¼
Z

R3

f � uwdx �
Z

R3

rp � uwdx ð1.5Þ

as we get integrating formally the product of (1.1) by wu with w an appropriate

weight function. First, let us note that divð��� ½!� x�Þ equals zero for w ¼ ��� . The

left hand side can be estimated from below by:

�

2

Z

R3

ruj j2wdx þ 1

2

Z

R3

uj j2 ��jrwj2=w� k@1w
� �

dx: ð1.6Þ

Because the term ��jrwj2=w� k@1w is known explicitly, we have the possibility

to evaluate it from below by a small negative quantity in the form �C ���1
��1

without any constraint in sð�Þ (see Lemma 2.5).
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An improved weighted Friedrichs-Poincaré type inequality in H
�

1
�; � is

necessary. The obtained inequality allows us to compensate by the viscous

Dirichlet integral the ‘‘small’’ negative contribution in the second integral of (1.6).

We finally prove the existence of a weak solution (1.1)–(1.3) in V�;� by the Lax-

Milgram theorem.

The main results of the first part of the paper can be summarized in the

following theorems (parameters �, �, �, " are specified in Section 1.3):

THEOREM 1.2. Let � > 0. There are positive constants R0, c0, c1 depending

on �, �, �, " (explicit expressions of these constants are given by Lemma 2.3,

essentially c0 ¼ Oð"�2 þ ��2Þ and c1 ¼ Oð"�1��1Þ for � and " tending to zero) such

that for all v 2 H
�

1
�; �

vk k22;��1;��1� c0

Z

BR0

rvj j2��� dx þ c1

Z

BR0

rvj j2��� dx: ð1.7Þ

THEOREM 1.3 (Existence and uniqueness). Let 0 < � � 1, 0 � � < y1�,

f 2 L2
�þ1;�, g 2 H1

loc
such that �rg� kg e1 þ gð!� xÞ 2 L2

�þ1;�; y1 will be given in

Lemma 4.3. Then there exists a unique weak solution fu; pg of the problem (1.1)–

(1.3) such that u 2 V�;�, p 2 L2
�;��1, rp 2 L2

�þ1;� and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C kfk2;�þ1;� þ k�rg� kg e1 þ g !� xð Þk2;�þ1;�

� �
:

In the second part of the paper (chapters 5, 6) we extend the results of the

first part onto exterior domains.

THEOREM 1.4. Let � � R3 be an exterior domain and 0 < � � 1,

0 � � < y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ, g 2 H

�
1ð�Þ with supp g ¼

K �� � and
R
�
g dx ¼ 0. Then there exists a weak solution fu; pg of the problem

(1.1)–(1.4) such that u 2 V�;�ð�Þ; p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C kfk2;�þ1;� þ kgk1;2 þ !2 þ !þ k2 þ k
� �

:

REMARK 1.5. Concerning @1u and ru, our analysis did not catch any

difference in the dependence of the parameters � and �. The reason appears inside

the proofs of the Theorems 1.3 and 1.4 when we ask for the coercivity of the
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bilinear form eQð�; �Þ, testing equation (4.20) by u��� . On the other hand, we have

no heuristic argument for not expecting better decay behavior of @1u like rp as in
Farwig’s result, see [2].

REMARK 1.6. The important feature of the Friedrichs-Poincaré type

inequality is that we are able to evaluate its coefficients, precisely expressed in

Lemma 2.3 separately near the obstacle and far from the obstacle.

REMARK 1.7. For � > 0, using these coefficients, negative values of the

function F�;�ð�; �Þ defined by the formula (2.13) can be compensated by the viscous

Dirichlet integral; this analysis was not required in [2] because F�;�ð�; �Þ is positive
when � < 0.

REMARK 1.8. The previous compensation cannot be associated with a large

interval of positive values for �: So, we receive the technical condition �=� < y1.

Using other type of weight functions characterized by some parameters, one can

get another technical condition on these parameters.

REMARK 1.9. We can improve the result from Theorem 1.4 removing the

assumptions on g relative to its compact support and to its zero mean value: This

will be the partial subject of a forthcoming paper. In the present paper, we have

decided to use simply the approach by Girault-Raviart (see Subsection 6.1) and

the standard Bogovski’s lemma in bounded domains, to get finally Corollary 6.7.

2. Friedrichs-Poincaré inequality.

In this section we derive an inequality of the Friedrichs-Poincaré type in

weighted Sobolev spaces. We also recall some necessary technical assertions, for

more details see Kračmar and Penel [27].

PROPOSITION 2.1. For arbitrary �; � � 0 and x 2 R3, x 6¼ 0:

���� xð Þ � 2�min 1; �ð Þ" � ���1
��1 xð Þ:

PROOF. We introduce �	 ¼ minð�; 1Þ in an explicit expression of ���� :

���� ¼
�

�2�2
1þ "s

1þ �r
� ��2

1þ "s

1þ �r

� �
þ 2���"

s

r

þ 2� � � 1ð Þ "
r

1þ �rð Þ "s

1þ "s

þ 2� �2 1þ "sð Þ 1

�r
þ 1� �	 þ �	ð Þ2� "

r
1þ �rð Þ

�
���1
��1 ;
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for r > 0. We denote the five terms in f g by T1, T2; . . . ; T5, and overwrite the

previous relation as ���� ¼ f½T1 þ T4� þ T2 þ ½T3 þ ð1� �	ÞT5� þ �	T5g ���1
��1 . Ob-

serving that T5 � 2�"�, the proposition is trivial. �

PROPOSITION 2.2. Let � � 0, � � 0, � > 0, " > 0 and � > 1. Then for

x 2 R3, jxj � j��1 � ð2"Þ�1jð�� 1Þ�1:

r��� xð Þ
			

			
2

� 2� � " �þ �ð Þ2 �
��1=2
��1=2 xð Þ

� �2
: ð2.8Þ

Let � � 0, � � 0, � > 0, " > 0 and ð� � �Þð2"� �Þ � 0. Then for x 2 R3,

x 6¼ 0:

r��� xð Þ
			

			
2

� �� þ 2�"ð Þ2 �
��1=2
��1=2 xð Þ

� �2
: ð2.9Þ

PROOF. If � ¼ 0 and � ¼ 0 then both inequalities (2.8) and (2.9) are valid.

Let us concentrate on the nontrivial cases:

For r > 0, s 2 ½0; 2r�, we have that @g=@s > 0, where g is a function defined by

relations:

r��� xð Þ
			

			
2

¼ gðs xð Þ; r xð ÞÞ �
��1=2
��1=2 xð Þ

� �2
;

gðs; rÞ 
 �2�2
1þ "s

1þ �r

� �
þ 2���"

s

r
þ 2�2"2

1þ �r

1þ "s

� �
s

r
:

So, gðs; rÞ is increasing as a function of s and

G rð Þ 
 max
s2½0;2r�

gðs; rÞ ¼ g 2r; rð Þ

¼ �2�2
1þ 2"r

1þ �r
þ 4���"þ 4�2"2

1þ �r

1þ 2"r
� 2� �þ �ð Þ2�" ð2.10Þ

for � > 1 and r � j��1 � ð2"Þ�1jð�� 1Þ�1. So, inequality (2.8) is proved.

To justify the second inequality (2.9), we observe that for the given values of

�, �, �, " and for r > 0, GðrÞ � Gð0Þ. �

Next we derive an inequality of the Friedrichs-Poincaré type in the space

H
�

1
�;�. It is necessary for our aim to get expressions of constants in this inequality.

It follows from Proposition 2.1.
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LEMMA 2.3. Let � � 0, � > 0, �þ � < 3, � > 1. Let � and " be arbitrary

positive constants, such that ð� � �Þð2"� �Þ � 0. Then for all u 2 H
�

1
�;�

uk k22;��1;��1 � c0 rujBR0
k k22;�;� þ c1 rujBR0



 

2
2;�;�

; ð2.11Þ

where c0 ¼ ½ð�� þ 2�"Þ=ð��	�"Þ�2, c1 ¼ ½ð2�Þ=ð�"Þ� � ½ð�þ �Þ=ð��	Þ�2 and R0 �
j��1 � ð2"Þ�1jð�� 1Þ�1.

REMARK 2.4. Let us observe that if additionally � < 2" and 1 < � �
2"=� þ �=ð2"Þ � 1 then c0 � c1.

PROOF OF LEMMA 2.3. Due to the density of C1
0 in H

�
1
�;� it is sufficient to

prove the inequality for all u 2 C1
0 . From Proposition 2.1 it follows that for

v 2 C1
0

2��	�"

Z

R3nB�

v2���1
��1 dx �

Z

R3nB�

v2���� dx

¼ �2

Z

R3nB�

v � rð Þv � r��� dx þ
Z

@B�

v2r��� � n dS

� ��	�"

Z

R3nB�

v2���1
��1 dx þ 1

��	�"

Z

R3nB�

rvj j2 r���
			

			
2

���þ1
��þ1 dx

þ
Z

@B�

v2 r��� � n dS:

Hence, because the surface integral is a value of the order Oð�2Þ, we have:

��	�"

Z

R3

v2���1
��1 dx � 1

��	�"

Z

R3

rvj j2 r���
			

			
2

���þ1
��þ1 dx: ð2.12Þ

By means of the Cauchy-Schwarz inequality and from Proposition 2.2 with R0 �
j��1 � ð2"Þ�1j=ð�� 1Þ we finally get (2.11). �

We will need some technical lemmas. Let us define F�;�ðs; rÞ by the relation:

F�;� s; rð Þ � ���1
��1 
 �� r���

			
			
2

=��� � k @1 �
�
� : ð2.13Þ

The following lemma gives the evaluation of F�;�ðs; rÞ from below.

LEMMA 2.5. Let 0 � � < �, � > 1, 0 < " � ð1=ð2�ÞÞ�ðk=�Þ�ðð� � �Þ=�2Þ and
�; �, k > 0. Then
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F�;� s; rð Þ � 1� ��1
� �

k�" � � �ð Þs � ���k 1þ �k�1��
� �

ð2.14Þ

for all r > 0 and s 2 ½0; 2r�.

PROOF. Expressing the function F�;�ðs; rÞ explicitly we get:

F�;� s; rð Þ ¼ ���2�2
1þ "s

1þ �r

� �
� 2����"

s

r
� 2��2"2

1þ �r

1þ "s

� �
s

r

� k�� 1þ "sð Þ r� s

r
þ k�" 1þ �rð Þ s

r
:

For convenient use we subtract ð1� ��1Þk�"ð� � �Þs from F�;�ðs; rÞ. We observe

(see Appendix A) that, for the given �, �, ", �, for all �, �, k > 0 and for r > 0,

F�;�ðs; rÞ � ð1� ��1Þk�"ð� � �Þs � F�;�ð0; rÞ, which immediately gives inequality

(2.14). �

3. Uniqueness in R3.

In this section, we will start with the question about the unique weak

solvability of the problem (1.1)–(1.3) in � ¼ R3. The presented approach will be

also used in the next section, in the proof of existence of a solution verifying

solenoidality of the constructed function u.

THEOREM 3.1 (Uniqueness in R3). Let fu; pg be a distributional solution of

the problem (1.1)–(1.3) with f ¼ 0, g ¼ 0 such that u 2cH 1;2
0 and p 2 L2

loc
. Then

u ¼ 0 and p ¼ const.

PROOF. From the condition u 2cH 1;2
0 we get ru 2 L2, u 2 L6, u 2 S

0.
Because divðð!� xÞ � ru � !� uÞ ¼ ð!� xÞ � rdivu ¼ 0, we have 4p ¼ 0.

Hence, applying Laplacian and the Fourier transform we get

4 ���u þ k @1u � !� xð Þ � ru þ !� uð Þ ¼ 0;

	j j2 � j	j2bu þ i k 	1bu � ð!� 	Þ � r	bu þ !� bu
� �

¼ 0 in S
0:

Assuming the equation in cylindrical coordinates ð	1; �; ’Þ, and denoting

T ð’Þ bv ¼ buð	1; �; ’Þ, where

T ’ð Þ ¼
1; 0; 0

0; cos ’ð Þ; � sin ’ð Þ
0; sin ’ð Þ; cos ’ð Þ

2
64

3
75;
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we get

	j j2 �@’bv þ ½ð�=e!Þj	j2 þ iðk=e!Þ	1�bv
n o

¼ 0 in S
0: ð3.15Þ

We will show that from this equation it follows that supp bv � f0g, and due to the

definition of bv we will have also supp bu � f0g. This means that u is a polynomial

of x1, x2, x3. Because u 2 L6 we get u ¼ 0. Substituting into (1.1) we get rp ¼ 0

and p ¼ const.

So, we have to prove that for an arbitrary real vector function � 2
C1

0 ðR3 n f0gÞ defined for ½	1; 	2; 	3� 2 R3 we have hbv;�i ¼ 0. If for each � 2
C1

0 ðR3 n f0gÞ there is a function � 2 C1
0 ðR3 n f0gÞ such that

@’ j	j2�
� �

þ ð�=e!Þj	j2 þ i ðk=e!Þ	1
h i

j	j2�
� �

¼ � ð3.16Þ

then from (3.15) it follows:

0 ¼ j	j2f�@’bv þ ½ð�=e!Þj	j2 þ i ðk=e!Þ	1�bvg; �
D E

¼ bv; @’ðj	j2�Þ þ ½ð�=e!Þj	j2 þ i ðk=e!Þ	1�ðj	j2�Þ
D E

¼ bv; �h i:

Hence, the proof of supp bv � f0g is reduced to the solvability of (3.16). First we

note that it is sufficient to solve the equation

@’
 þ ð�=e!Þ j	j2 þ i ðk=e!Þ 	1
� �


 ¼ � ð3.17Þ

because the division on the expression j	j2 defines the one-to-one correspondence

of the space C1
0 ðR3 n f0gÞ onto C1

0 ðR3 n f0gÞ.
Let us analyze the equation (3.17) in cylindrical coordinates ½	1; �; ’�, where

� ¼ ð	22 þ 	23Þ
1=2. For an arbitrary real vector function � 2 C1

0 ðR3 n f0gÞ defined
for ½	1; 	2; 	3� 2 R3 we define fðtÞ :¼ �ð	1; � cos t; � sin tÞ, a :¼ ð�=e!Þj	j2 þ
iðk=e!Þ	1, assuming e! > 0.

Now, we will use the following technical proposition about the existence of a

solution of an ordinary differential equation in a space of periodical functions (and

later also in the proof of existence of a solution of the problem for checking

solenoidality of a constructed solution, see the proof of Theorem 4.4):

PROPOSITION 3.2. Let a 2 C , Re a > 0. Let f 2 C1ðRÞ be a 2�-periodical

complex function. Then there is unique 2�-periodical solution g 2 C1ðRÞ of the

equation
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g0 þ a g ¼ f

and the solution g can be expressed in the following form:

g ’ð Þ ¼ e2�a � 1
� ��1

Z 2�

0

eatf ’þ tð Þ dt ¼ e�a’
Z ’

�1
eatf tð Þ dt:

Proof of the proposition follows from standard computations.

Using the Proposition 3.2 we get the solution of (3.17) in the form


 	1; �; ’ð Þ ¼ exp 2�
�

e! 	j j2 þ i
k

e!

� �� �
� 1

� ��1

�
Z 2�

0

exp
�

e! 	j j2 þ i
k

e! 	1
� �

t

� �
� 	1; � cos tþ ’ð Þ; � sin tþ ’ð Þð Þ dt:

It is easy to see that function 
 as the function of ½	1; 	2; 	3� is infinitely

differentiable with respect to these variables and 
 2 C1
0 ðR3 n f0gÞ. Finally we

put � ¼ 
=j	j2. �

4. Existence of a solution in R3.

In this section we will construct a weak solution of the problem (1.1)–(1.3).

4.1. Existence of the pressure in R3.

If there exist distributions u; p satisfying

���u þ k @1u � !� xð Þ � ru þ !� u þrp ¼ f in R3

divu ¼ g in R3

then pressure p satisfies the equation

4 p ¼ divF; where F ¼ f þ �rg� kg e1 þ gð!� xÞ; ð4.18Þ

because divðð!� xÞ � ru � !� uÞ ¼ ð!� xÞ � rdivu ¼ div½gð!� xÞ�.
Let E be the fundamental solution of the Laplace equation, i.e. E ¼ �1=ð4�rÞ.

Assuming firstly F 2 C1
0 we have p ¼ E ? divF and rp ¼ rE ? divF and so,

p ¼ rE ? F and rp ¼ r2E ? F. It is well known that both formulas can be

extended for F 2 L2
�þ1; � with 0 < � < 1 and �2 < �þ � < 2 (the last convolution

rp ¼ r2E ? F due to the fact that r2E is the singular kernel of the Calderon-

Zygmund type and that ��þ1
� belongs to the Muckenhoupt class of weights A2), see

[2, Theorem 3.2, Theorem 5.5], [26, Theorem 4.4, Theorem 5.4], where the
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theorems are formulated for the pressure part P of the fundamental solution of

the classical Oseen problem, so P ¼ rE and rP ¼ r2E . For F 2 L2
�þ1;� we get

p 2 L2
�;��1 and rp 2 L2

�þ1;�, and there are positive constants C1; C2 such that the

following estimates are satisfied:

pk k2;�;��1 � C1 Fk k2;�þ1;�; rpk k2;�þ1;� � C2 Fk k2;�þ1;� ð4.19Þ

REMARK. Another possibility of construction of the pressure is the use of

Hörmander-Michlin multiplier theorem. Both techniques can be used in L2- as

well as in Lq-framework to get an estimate of rp.

4.2. The problem in BR.

We will study in this section the existence of a weak solution of the following

problem in a bounded domain BR, pressure p is assumed here to be known, the

right hand side f �rp ¼ ef 2 L2
�þ1;�:

���u þ k @1u � !� xð Þ � ru þ !� u ¼ ef in BR ð4.20Þ
u ¼ 0 on @BR: ð4.21Þ

We show the existence of a weak solution uR 2 H
�

1ðBRÞ. Following (1.5), (1.6)

again with w ¼ �0�0 , �0 2 ð0; 1�, using notation (2.13), let us introduce a continuous

bilinear form eQð�; �Þ on H
�

1ðBRÞ �H
�

1ðBRÞ:

eQ u; vð Þ ¼ �

Z

BR

ru : r v � �0�0
� �

dx þ k

Z

BR

@1u � v�0�0

� �
dx

þ
Z

BR

!� xð Þ � ru v�0�0

� �
dx þ

Z

BR

!� uð Þ � v�0�0

� �
dx;

eQ v; vð Þ � 2�1�

Z

BR

rvj j2�0�0 dx þ 2�1

Z

BR

v2F0;�0 s; r; �ð Þ��1
�0�1 dx: ð4.22Þ

LEMMA 4.1. Let 0 < �0 � 1. Then, for all ef 2 L2
1;�0

ðBRÞ, "0 < ð1=2Þ � ðk=�Þ �
ð1=�0Þ, ���0 
 ��;"0�0;"0

, there exists unique uR 2 H
�

1ðBRÞ such that for all v 2 H
�

1ðBRÞ.

eQ uR; vð Þ ¼
Z

BR

ef � v�0�0 dx: ð4.23Þ

PROOF. Bilinear form eQ is coercive, i.e. there exists a constant CR > 0 such

that eQðv; vÞ � CR kvk2, where k � k is the norm in the space H
�

1ðBRÞ. Indeed, we
get
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eQ v; vð Þ � �

2

Z

BR

rvj j2�0�0 dx þ 1

2

Z

BR

v2F0;�0ðs; rÞ ��1
�0�1 dx

Because "0 < ð1=2Þ � ðk=�Þ � ð1=�0Þ there is a constant � satisfying all previous

conditions and additionally "0 � ð1=2�Þ � ðk=�Þ � ð1=�0Þ. Because � ¼ 0 we get from

Lemma 2.5

Z

BR

v2F0;�0ðs; rÞ ��1
�0�1 dx � 1� ��1

� �
k"20�0

Z

BR

v2��1
�0�1s dx;

eQ v; vð Þ � �

2

Z

BR

rvj j2�0�0 dx þ 1

2
1� 1

�

� �
k"0�0

Z

BR

v2��1
�0�1 "0sð Þ dx:

Using Lemma 2.3 and Remark 2.4 we derive:

eQ v; vð Þ � �

4

Z

BR

rvj j2�0�0 dx þ �

16
"20�

2
0

Z

BR

v2��1
�0�1 dx

þ 1

2
1� 1

�

� �
k"0�0

Z

BR

v2��1
�0�1 "0sð Þ dx

� 1� 1

�

� �
�

4
min 1;

1

4
"20�

2
0 ; 2

k

�
�0"0

� �

�
Z

BR

rvj j2�0�0 dx þ
Z

BR

v2��1
�0
dx

� �
ð4.24Þ

eQ v; vð Þ � CR

Z

BR

rvj j2 dx þ
Z

BR

v2 dx

� �
¼ CR vk k2; ð4.25Þ

where CR ¼ ð�=4Þ � ð1� ��1Þ �minf1; "20�20=4; 2ðk=�Þ�"0g � ð1þ "0RÞ. Using Lax-

Milgram theorem we get that there is uR 2 H
�

1ðBRÞ such that (4.23) is

satisfied. �

REMARK 4.2. An arbitrary function � 2 H
�

1ðBRÞ can be expressed in the

form � ¼ v �0�0 , where v 2 H
�

1ðBRÞ. Therefore for all � 2 H
�

1ðBRÞ

Q uR;�ð Þ ¼
Z

BR

ef �� dx; ð4.26Þ

where by the definition QðuR;�Þ 
 QðuR; v�0�0Þ 
 eQðuR; vÞ.
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4.3. Uniform estimates of uR in R3.

Our next aim is to prove that the weak solutions uR of (4.23) are uniformly

bounded in V�;� as R! þ1.

Let y1 be the unique real solution of the algebraic equation 4y3 þ 8y2 þ
5y� 1 ¼ 0. It is easy to verify that y1 2 ð0; 1Þ. We will explain later, why the

control of �=� by y1 is necessary.

LEMMA 4.3. Let 0 < � � 1, 0 � � < y1�, ef 2 L2
�þ1;�. Then, as R! þ1, the

weak solutions uR of (4.23) given by Lemma 4.1 are uniformly bounded in V�;�.

There is a constant c > 0, which does not depend on R such that

Z

R3

~u2
R�

��1
� dx þ

Z

R3

r ~uRj j2��� dx � c

Z

R3

ef
			
			
2

��þ1
� dx ð4.27Þ

for all R greater than some R0 > 0, ~uR being extension by zero of uR on R3 nBR.

PROOF. First, we derive estimate of uR on a bounded subdomain BR0
� BR;

The choice of R0 will be given in the next part of the proof. Our aim is to get an

estimate with a constant not depending on R. Let us substitute v ¼ uR into

(4.23). Hence, we get from (4.24):

eQ uR;uRð Þ ¼
Z

BR

ef uR�0�0 dx � C1

Z

BR

ruRj j2�0�0 dx þ
Z

BR

u2
R�

�1
�0
dx

� �
;

with the constant C1 > 0 stated in (4.24). Let R0 be some fixed positive number

such that 0 < R0 < R. We get

Z

BR0

ruRj j2��� dx þ
Z

BR0

u2
R�

��1
� dx � C2

Z

BR

ef
			
			 uRj j��� dx; ð4.28Þ

where the constant C2 ¼ C�1
1 ð1þ "0 R0Þ�ð1þ "0 2R0Þj���0j depends on k, �, �, �,

�0, "0, R0, �, but does not depend on R.

Now, we are going to derive an estimate of uR on domain BR. Using the test

function � ¼ uR�
�
� ¼ uRð1þ �rÞ�ð1þ "sÞ� 2 H

�
1ðBRÞ in (4.26) we get after

integration by parts:

�

Z

BR

ruRj j2��� dx þ �

Z

BR

uR � ruRð Þ � r��� dx � k

2

Z

BR

u2
R @1�

�
� dx

¼
Z

BR

efuR��� dx:
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So, we get for some � > 1:

�

2

Z

BR

ruRj j2��� dx þ 1

2

Z

BR

u2
RF�;�ðs; rÞ���1

��1 dx �
Z

BR

ef
			
			 uRj j��� dx:

Let R0 � j��1 � ð2"Þ�1jð�� 1Þ�1. Using Lemma 2.5 (with 0 � � < �, " � ð1=ð2�ÞÞ
ðk=�Þðð� � �Þ=�2Þ) and Lemma 2.3 (with � < 2"), the second term in the previous

estimate can be evaluated from below:

Z

BR

u2
R F�;�ðs; rÞÞ���1

��1 dx

� ���k 1þ ��

k
��

� �
2�

�"

�þ �

��	

� �2Z

BR0

R

ruRj j2��� dx

þ 1� ��1
� �

k�" � � �ð Þ
Z

BR0

R

u2
R�

��1
��1s dx � 2C4

Z

BR0

ruRj j2��� dx:

Denote C5 ¼ ��kð1þ ����=kÞð�=ð� "ÞÞðð�þ �Þ=ð��	ÞÞ2. It is clear that C5 �
�=ð2�2Þ < �=ð2�Þ if 1þ ����=k � � (i.e. � � ðk=�Þ � ðð�� 1ÞÞ=ð��Þ) and � �
ð1=ð2�4ÞÞ � ð�=kÞ � ðð� �	Þ=ð�þ �ÞÞ2". We have

�

2�

Z

BR

ruRj j2 ��� dx þ 1

2
1� 1

�

� �
k�" � � �ð Þ

Z

BR

u2
R�

��1
��1 s dx

� C6

Z

BR0

u2
R�

��1
��1 dx � C7

Z

BR0

ruRj j2��� dx �
Z

BR

ef
			
			 uRj j��� dx:

We use now relation (4.28) in order to estimate the integrals computed on the

domain BR0
. Before using the mentioned inequality we should re-scale it with

respect to new values "; �, see Remark 1.1. The new constant in (4.28) after

rescaling we denote C0
2.

�

�

Z

BR

ruRj j2��� dx þ k�" � � �ð Þ
Z

BR

u2
R�

��1
��1s dx � C8

Z

BR

ef
			
			 uRj j��� dx;

where C8 ¼ f1þ C0
2 maxðC6; C7Þg � 2 � ð1� ��1Þ�1. We use Lemma 2.3 and Re-

mark 2.4. So, if � < 2" and 1 < � � 2"=� þ �=ð2"Þ � 1 we get

�

2�

� �	� "

�� þ 2�"

� �2Z

BR

u2
R �

��1
��1 dx � �

2�

Z

BR

ruRj j2��� dx;
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�

2�

Z

BR

ruRj j2��� dx þ �

2�

� �	� "

�� þ 2�"

� �2Z

BR

u2
R�

��1
��1 dx

þ k�" � � �ð Þ
Z

BR

u2
R�

��1
��1s dx � C8

Z

BR

ef
			
			 uRj j��� dx:

So we get

Z

BR

ruRj j2��� dx þ 2

Z

BR

u2
R�

��1
��1 dx þ 2"

Z

BR

u2
R�

��1
��1s dx

¼
Z

BR

ruRj j2��� dx þ 2

Z

BR

u2
R�

��1
� dx � C10

Z

BR

ef
			
			 uRj j��� dx;

C9 ¼ minð�=ð2�Þ; ð�=ð2�ÞÞ ð��	�"=ð�� þ 2�"ÞÞ2, k�ð� � �Þ=2Þ and C10 ¼ C8=C9.

We have also:

Z

BR

ef
			
			 uRj j��� dx � t

2

Z

BR

u2
R�

��1
� dx þ 1

2t

Z

BR

ef
			
			
2

��þ1
� dx

So, if we choose t ¼ 2 � C�1
10 then we get:

Z

BR

ruRj j2��� dx þ
Z

BR

u2
R �

��1
� dx � c

Z

R3

ef
			
			
2

��þ1
� dx:

It can be easily shown that the all conditions on �, �, �, ", � used in the proof are

compatible if 0 � � < y1�, see Appendix B. �

4.4. The problem in R3.

Let y1 be the same as in Lemma 4.3.

THEOREM 4.4 (Existence and uniqueness in R3). Let 0 < � � 1, 0 � � <

y1�, f 2 L2
�þ1;�, g 2 H1

loc
such that �rg� kg e1 þ gð!� xÞ 2 L2

�þ1;�. Then there

exists a unique weak solution fu; pg of the problem

���u þ k@1u � !� xð Þ � ru þ !� u þrp ¼ f in R3; ð4.29Þ
divu ¼ g in R3 ð4.30Þ

such that u 2 V�;�, p 2 L2
�;��1, rp 2 L2

�þ1;� and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C fk k2;�þ1;� þ �rg� kg e1 þ g !� xð Þk k2;�þ1;�

� �
: ð4.31Þ
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PROOF. The uniqueness of the solution follows from Theorem 3.1, and we

now justify the existence. Let p be the same as in Subsection 4.1. Let fRng be a

sequence of positive real numbers, converging to þ1. Let uRn
be the weak

solution of (4.20), (4.21) on BRn
. Extending uRn

by zero on R3 nBRn
to a function

~un 2 V�;� we get a bounded sequence f ~ung in V�;�. Thus, there is a subsequence

~unk of ~un with a weak limit u in V�;�. Obviously, u is a weak solution of (4.29)

and

uk k22;��1;� þ ruk k22;�;� � lim inf
k2N

Z

R3

~u2
nk
���1
� dx þ

Z

R3

r ~unkj j2��� dx
� �

� c ef
			
			
2

��þ1
� dx ¼ c

Z

R3

f �rpj j2 ��þ1
� dx:

Taking into account also relation (4.19) we get (4.31).

Let us also check that for u the equation (4.30) is satisfied. Let us mention

that u 2 H 2
loc

because f �rp 2 L2
�þ1;�. So, computing the divergence of (4.29), we

get

� �� divuð Þ þ k@1 divuð Þ � !� xð Þ � r divuð Þ ¼ div f �4p ð4.32Þ

in the distributional sense. From (4.18) we have

���� þ k@1� � !� xð Þ � r� ¼ 0

for � ¼ divu � g 2 L2
�;� � L2. Using Fourier transform we get

� j	j2 þ i k 	1

� �
b� � !� 	ð Þ � r	b� ¼ 0 in S

0:

Assuming b� in cylindrical coordinates ½	1; �; ’�, � ¼ ð	22 þ 	23Þ
1=2, we can overwrite

the equation in the form:

�@’b� þ ð�=e!Þ j	j2 þ i ðk=e!Þ 	1
h i

b� ¼ 0:

Using the same approach as in the proof of the uniqueness Theorem 3.1 we

prove that supp b� � f0g. The proof of this fact is reduced to the solvability of the

equation (3.17) which was proved for arbitrary � 2 C1
0 ðR3 n f0gÞ in the proof of

Theorem 3.1. So, by the same procedure we derive that � is a polynomial in R3

and because � 2 L2 we get � 
 0, i.e. (4.30). �
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5. Uniqueness in an exterior domain � � R3.

The last two sections are devoted to the problem in an exterior domain. We

start with the question of uniqueness. The uniqueness theorem proved in this

section together with the uniqueness theorem in R3 from Section 3 will be used in

the next section in the proof of the existence of a solution in an exterior domain, in

the localization procedure. The homogenous Dirichlet boundary condition on @�

for u in the next theorem follows from the assumption u 2 V 0;0ð�Þ.

THEOREM 5.1. Let fu; pg be a distributional solution of the problem (1.1)–

(1.3) with f ¼ 0 and g ¼ 0 such that u 2 V 0;0ð�Þ and p 2 L2
�1;0ð�Þ. Then u ¼ 0

and p ¼ 0.

PROOF. Let � ¼ �ðzÞ 2 C1
0 ðh0;þ1ÞÞ be a non-increasing cut-off function

such that �ðzÞ 
 1 for z < 1=2 and �ðzÞ 
 0 for z > 1. Let j�0j � 3. Let

�R 
 �RðxÞ 
 �ðjxj=RÞ. We have jr�Rj � 3=R and j@1�Rj � 3=R for x 2 R3,

R=2 � jxj � R. Let fRjg 2 R be an increasing sequence of radii with the limit

þ1. So we have that uj 
 u � �Rj
2 H

�
1ð�Þ, and fujg is a sequence of functions

with limit u in the space V 0;0ð�Þ. Using the (non-solenoidal) test functions

’ ¼ u �2
Rj

¼ uj �Rj
2 H

�
1ð�Þ for equation (1.1) we get:

�

Z

�

ru : r u �2
Rj

� �
dx þ k

Z

�

@1u � u �2
Rj
dx

þ
Z

�

!� xð Þ � ru � u �2
Rj
dx þ

Z

�

rp � u �2
Rj
dx ¼ 0: ð5.33Þ

Using in (5.33) relation ru : rðu�2
Rj
Þ ¼ jrujj2 �r�Rj

� r�Rj
juj2, integrating

by parts, we get after some evident rearrangements

�

Z

�

ruj
		 		2 dx � 1

2

Z

�

div !� xð Þ uj
		 		2 dx

� k

2

Z

�

uj j2 @1�2
Rj
dx � 1

2

Z

�

uj j2 !� xð Þ � r�2
Rj
dx

� �

Z

�

r�Rj

		 		2 uj j2 dx �
Z

�

pu � r �2
Rj

� �
dx ¼ 0:

�

Z

�

ruj
		 		2 dx � C

Z

�
Rj=2

Rj

uj j2r�1 dx þ
Z

�
Rj=2

Rj

pj j uj jr�1 dx

 !
:

u 2 L2
�1;0ð�Þ, p 2 L2

�1;0ð�Þ, pu 2 L1
�1;0ð�Þ. So, for j! 1 we get

R
�
jruj2 dx � 0.

Hence, the function ru ¼ 0 a.e. in �, and this means u is a constant a.e. in �.
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From u 2 L2
�1;0ð�Þ it follows that u ¼ 0 a.e. in �. Using now an arbitrary test

function � for equation (1.1), we get
R
�
rp � dx ¼ 0. So, the function rp ¼ 0 a.e.

in �, and this means p is a constant a.e. in �. From p 2 L2
�1;0ð�Þ it follows that

p ¼ 0 a.e. in �, and the uniqueness is proved. �

6. Existence of solution in exterior domains.

In this section we assume problem (1.1)–(1.4) in an exterior domain �. First

we assume the case of the homogenous Dirichlet boundary condition on @�.

6.1. Homogenous Dirichlet boundary conditions.

Function g is assumed to be zero, and f ¼ divF with F 2 C1
0 ð�Þ9. We will

prove that the problem has a weak solution fu; pg 2cH 1
0ð�Þ � L2

loc
ð�Þ. So we

assume the following sequence of problems on domains �R ¼ BR \ �:

���uR þ k @1uR þ !� xð Þ � ruR � !� uR þrpR ¼ DivF in �R ð6.34Þ
divuR ¼ 0 in �R ð6.35Þ
uR ¼ 0 on @�R ð6.36Þ

Following Girault-Raviart [16], we formulate each problem in the following mixed

variational form: To find fuR; pRg 2 WR � �R, such that for all v 2 WR, � 2 �R:

a uR; vð Þ þ b v; pRð Þ ¼ DivF; vh i ð6.37Þ
b uR; �ð Þ ¼ 0; ð6.38Þ

where WR ¼cH 1
0ð�RÞ, �R ¼

n
� 2 L2ð�RÞ;

R
�R
� dx ¼ 0

o
with usual norms

k�kWR
¼ kr�k2, k�k�R

¼ k�k2, and

a �;  ð Þ ¼ �

Z

�R

r� � r dx þ k

Z

�R

@1� �  dx

þ
Z

�R

!� xð Þ � r�� !� �½ � �  dx

b �; �ð Þ ¼ �
Z

�R

� div�dx:

These bilinear forms are continuous on WR �WR and WR ��R, respectively. It

is easy to see that að�; �Þ � � k�k2WR
, and it is known that

sup
v2WR

�; div vð Þ
vj jWR

� C0 �k k�R
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for some C0 ¼ C0ðRÞ > 0. Hence, there exists a weak solution fuR; pRg of the

problem and kuRkWR
þ kpRk�R

� C1 kDivFk�1 for some C1 ¼ C1ðRÞ > 0. Testing

now (6.37) by v ¼ uR we get:

�

Z

�R

ruRj j2 dx ¼
Z

�R

DivFð Þ � uR dx ¼
Z

�R

F : ruR dx � Fk k2 ruRk k2

ruRk k2� ��1 Fk k2: ð6.39Þ

Since the a priori estimate (6.39) is available, where uR is understood as its

extension by setting zero in � n �R, there exists u 2cH 1
0ð�Þ and a sequence

fRng ! 1 so that uRn
* u weakly in cH 1

0ð�Þ as n! 1.

Let us show that divu ¼ 0 in L2ð�Þ. From the same inequality follows the

weak convergence of divuRn
in L2ð�Þ. From (6.38) we get divuRn


 Cn on �Rn
for

some real constant Cn depending on n. In spite of (6.39) we get that the weak limit

of divuRn
is zero in L2ð�Þ.

Finally, for all � 2 C1
0 ð�Þ with div� ¼ 0 we have from (6.37) after Rn ! 1

Lu �DivF; �h i ¼ 0;

Lu 
 ���u þ k @1u þ !� xð Þ � ru � !� u:

By a result of de Rham, there is a distribution p such that �rp ¼ Lu �DivF in

D
0ð�Þ. Because the right-hand side belongs to H�1ð�RÞ for every sufficiently large

R > 0 we have that p 2 L2ð�RÞ and so, p 2 L2
loc
ð�Þ.

Now we use the following

LEMMA 6.1 (Kozono and Sohr [22, Lemma 2.2, Corollary 2.3]). Let � �
Rnðn � 2Þ be any domain and let 1 < q <1. For all g 2 bW�1;qð�Þ, there is

G 2 Lqð�Þn such that

divG ¼ g; kGkq;� � Ckgk�1;q;�

with some C > 0. As a result, the space fdivG; G 2 C1
0 ð�Þng is dense in

bW�1;qð�Þ.

Hence, we get the existence of solution fu; pg 2cH 1
0ð�Þ � L2

loc
ð�Þ for an arbitrary

function ef 2cH�1ð�Þ.
For the extension of Theorem 4.4 to the case of an exterior domain we use the

localization procedure, see [22]. Let now f 2 L2
�þ1;�ð�Þ. We define for an arbitrary

R > 0:
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fR ¼
f ; x 2 �R

0; x 2 � n �R.

�

It can be shown that fR belongs tocH�1ð�Þ \ L2
�þ1;�ð�Þ. By use of cut-off function

� we decompose the solution fu; pg of the problem (1.1)–(1.4) (with the

homogenous Dirichlet boundary condition) on the solution of a problem in R3 and

the solution of a Stokes problem in a bounded domain:

u¼ U þV where U ¼ ð1��Þu, V ¼ �u

p¼ þ � where  ¼ ð1��Þp, � ¼ �p;

where � 2 C1
0 , supp� �� B�1 such that � 
 1 on B�0 , 0 < �0 < �1 < � so that

R3 n � � B�0 . We get that fU ; g is a weak solution of the modified Oseen

problem in R3

��4U þ k @1U � !� xð Þ � rU þ !�U þr ¼ Z1 ð6.40Þ
divU ¼ �r� � u ð6.41Þ

and fV ; �g is weak solution of the Stokes problem in a bounded domain ��

��4V þr� ¼ Z2 in �� ð6.42Þ
divV ¼ r� � u in �� ð6.43Þ
V j@��

¼ 0 ð6.44Þ

where the right-hand sides are given by Z1 and Z2.

Z1 ¼ 2r� � ru þ u 4�� k@1�u þ r� � !� xð Þð Þu �r� p

þ 1��ð ÞfR;
Z2 ¼ �2r� � ru � u 4�þ k@1�u þ� !� xð Þ � ru � !� u½ �

þ r� pþ� fR:

Let us mention that Z1 2 L2
�þ1;�ð�Þ. To solve the Stokes problem on the bounded

domain we use the following lemma, see [22]:

LEMMA 6.2 (The Stokes problem on a bounded domain). Let � be a

bounded domain of Rn, n � 2, of class Cmþ2, m � 0. For any

f 2 Wm;q �ð Þ; g 2Wmþ1; q �ð Þ; v	 2 Wmþ2�1=q;q @�ð Þ;
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1 < q <1, with

Z

@�

v	 � n dS ¼
Z

�

g dx; ð6.45Þ

there exists one and only one solution fV ; �g to the Stokes system

�4V þr� ¼ f in �

divV ¼ g in �

V ¼ v	 on @�

such that V 2 Wmþ2;qð�Þ, � 2Wmþ1;qð�Þ and

kVkmþ2; q þ k� � �kmþ1; q � c kfkm; q þ kv	kmþ2�1=q; q þ kgkmþ1;q

� �
; ð6.46Þ

where � ¼ j�j�1
R
�
� dx and c ¼ cðm;n; q;�Þ.

Furthermore, for � of class C2, for every

f 2 W
�1;q
0 �ð Þ; g 2 Lq �ð Þ; v	 2 W 1�1=q;q @�ð Þ;

1 < q <1, with (6.45) there exists one and only one q-generalized solution fV ; �g
to the Stokes system such that V 2 W 1;qð�Þ, � 2 Lqð�Þ and the estimate (6.46) is

valid with m ¼ �1.

From the results about the existence and uniqueness of solutions of the Oseen

problem in R3 (6.40), (6.41), i.e. from Theorem 4.4 and Theorem 3.1 it follows,

that a solution fU ; g is subject of the estimate (4.31), with f and g replaced by

Z1 and �r� � u, respectively. Using also the respective results in a bounded

domain for (6.42)–(6.44), see Lemma 6.2 with m ¼ 0 and bounded domain ��, we

get the following lemma for an exterior domain:

LEMMA 6.3. Let � � R3 be an exterior domain and 0 < � � 1, 0 � � < y1 �
�; y1 is given in Lemma 4.3. Then there exists a weak solution fu; pg of the problem
(1.1)–(1.3) with the homogenous Dirichlet boundary condition, f :¼ fR and g ¼ 0,

such that u 2 V�;�ð�Þ, p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C1 fRk k2;�þ1;� þ uk k1;2;A�
þ pk k0;2; ��

� �
; ð6.47Þ

where A� :¼ B� nB�=2, and constant C1 does not depend on R.
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Now, we would like to show that the preceding estimate is valid (with

another constant) also if we add to the left-hand side the L2-norm of second

gradient of u on some compact subset of �. Taking into account the assertion of

Lemma 6.2 for m ¼ 0, we get that u 2 W
2;2
loc
ð�Þ, p 2W 1;2

loc
ð�Þ. Multiplying the

relation (1.1)–(1.4) in an exterior domain � (with g ¼ 0 and the homogenous

Dirichlet boundary condition on @�) by �u and integrating over the compact set

K1 with A� � K1 � �, we get

k�uk2;K1
� C2 kuk2;K1

þ kruk2;K1
þ kpk2;K1

þ krpk2;K1
þ kfRk2;K1

� �
: ð6.48Þ

Using (6.47), (6.48) and the known relation

kr2uk2;K � c k�uk2;K1
þ kruk2;K1

� �

with A� � K � K1, we get

COROLLARY 6.4. In conditions of Lemma 6.3 the following estimate is valid

and constant C does not depend on R:

uk k2;��1;� þ ruk k2;�;� þ r2u


 



2;A�
þ pk k2;�;��1 þ rpk k2;�þ1;�

� C fRk k2;�þ1;� þ uk k1;2;A�
þ pk k0;2;��

� �
: ð6.49Þ

Now, we will prove that the estimate (6.49) is valid without the right-hand

side terms containing u and p with constant c which does not depend on R, i.e. we

will prove:

uk k2;��1;� þ ruk k2;�;� þ r2u


 



2;A�
þ pk k2;�;��1 þ rpk k2;�þ1;�

� c fRk k2;�þ1;� ð6.50Þ

Let us define the norms:

k v; qð Þkð1Þ :¼ kvk1;2;A�
þ kqk0;2;��

k v; qð Þkð2Þ :¼ kvk2;��1;� þ krvk2;�;� þ kr2vk2;A�

þ kqk2;�;��1 þ krqk2;�þ1;�:

For the corresponding Hilbert spaces H1, H2, we have H2 ,!,! H1. Let us assume

that the estimate (6.50) is not true. This means that there is a sequence of
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functions
n
f
ðkÞ
Rk

o1

k¼1
with Rk ! þ1, a sequence of corresponding solutions

fðuk; pkÞg1k¼1 and a sequence of constants fckg1k¼1 ! 1 such that:

1 
 kukk2;��1;� þ krukk2;�;� þ kr2ukk2;A�
þ kpkk2;�;��1 þ krpkk2;�þ1;�


 uk; pkð Þk kð2Þ � ck f
ðkÞ
Rk









2;�þ1;�

:

So we get
n

f
ðkÞ
Rk









2;�þ1;�

o
k
! 0. The sequence fðuk; pkÞg1k¼1 is bounded in the norm

k � kð2Þ, so there is a subsequence of this sequence (we will denote this subsequence

using the same notation) with the weak limit ðu; pÞ in the corresponding Hilbert

space H2. So, ðu; pÞ is a solution of the problem with the zero right-hand side. Due

to uniqueness given by Theorem 5.1 we conclude that kðu; pÞkð2Þ ¼ 0. Because

H2 ,!,! H1, we have kðu � uk; p� pkÞkð1Þ ! 0. From Corollary 6.4 we also get

k u � uk; p� pkð Þkð2Þ ! 0;

i.e. fðuk; pkÞg1k¼1 converges strongly in H2. Because kðuk; pkÞkð2Þ ¼ 1 for k 2 N , so

we also get kðu; pÞkð2Þ ¼ 1. This is the contradiction.

So, we proved the following

THEOREM 6.5. Let � � R3 be an exterior domain and 0 < � � 1, 0 � � <

y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ. Then there exists a weak solution

fu; pg of the problem (1.1)–(1.3) with the homogenous Dirichlet boundary

condition on @�, g ¼ 0, such that u 2 V�;�ð�Þ, p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;� � C fk k2;�þ1;�:

REMARK 6.6. The used contradiction argument is based on a subtle choice

of the sequence
n
f
ðkÞ
Rk

o
k
with Rk ! þ1. We cannot construct a contradiction

separately for fR with fixed R because then the constant c in (6.50) may depend

on R.

6.2. Non-homogenous cases.

In this subsection we take into account the non-homogenous Dirichlet

boundary condition and the non-homogenous continuity equation.

We can prove the following extension of Theorem 6.5 for the case g 6¼ 0:

COROLLARY 6.7. Let � � R3 be an exterior domain and 0 < � � 1,

0 � � < y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ, g 2W 1;2

0 ð�Þ, with supp g ¼
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K �� � and
R
�
g dx ¼ 0. Then there exists a weak solution fu; pg of the problem

(1.1)–(1.3) with the homogenous boundary condition on @� such that u 2 V�;�ð�Þ,
p 2 L2

�;��1ð�Þ, rp 2 L2
�þ1;�ð�Þ and

uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;� � C fk k2;�þ1;� þ kgk1;2
� �

:

First of all let us recall the lemma which will be used for the extension of our

results to the case with nonzero divergence:

LEMMA 6.8 (M. E. Bogovski, G. P. Galdi, H. Sohr). Let � � Rn, n � 2, be a

bounded Lipschitz domain, and 1 < q <1, n 2 N . Then for each g 2W k;q
0 ð�Þ with

R
�
g dx ¼ 0, there exists G 2

�
W kþ1;q

0 ð�Þ
�n

satisfying

divG ¼ g; Gk kðW kþ1;q
0

ð�ÞÞn � C gk kW k;q
0

�ð Þ

with some constant C ¼ Cðq; k;�Þ > 0.

For the proof and further references see e.g. [31, Lemma 2.3.1].

PROOF OF COROLLARY 6.7. Using Lemma 6.8 we find G 2 W
2;2
0 ð�Þ,

suppG � K , where K is a bounded Lipschitz domain being contained in

"-neighbourhood K " of compact set K for an arbitrary " > 0, divG ¼ g,

kGk2;2 � Ckgk1;2. We choose " such that K " � �. Let us assume the following

problem

���U þ k @1U � !� xð Þ � rU þ !�U þrp ¼ F in �

divU ¼ 0 in �

with the homogenous Dirichlet boundary condition for U , where U ¼ u �G,

F ¼ f þ ��G � k @1G þ ð!� xÞ � rG � !�G. The assertion of Corollary 6.7

follows from Theorem 6.5. �

Now we justify our third main theorem.

THEOREM 6.9. Let � � R3 be an exterior domain and 0 < � � 1,

0 � � < y1 � �; y1 is given in Lemma 4.3, f 2 L2
�þ1;�ð�Þ, g 2W 1;2

0 ð�Þ, with supp g ¼
K �� � and

R
�
g dx ¼ 0. Then there exists a weak solution fu; pg of the problem

(1.1)–(1.4) such that u 2 V�;�ð�Þ, p 2 L2
�;��1ð�Þ, rp 2 L2

�þ1;�ð�Þ and
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uk k2;��1;� þ ruk k2;�;� þ pk k2;�;��1 þ rpk k2;�þ1;�

� C fk k2;�þ1;� þ kgk1;2 þ !2 þ ! þ k2 þ k
� �

:

PROOF. Let � > 0 be such that R3 nB�=2 � �. Let � ¼ �ðzÞ 2 C1
0 ðh0;þ1ÞÞ

be a non-increasing cut-off function such that �ðzÞ 
 1 for z < 1=2 and �ðzÞ 
 0

for z > 1. Let j�0j � 3. Let �� 
 ��ðxÞ 
 �ðjxj=�Þ. We have jr��j � 3=� and

j@1��j � 3=� for x 2 R3, �=2 � jxj � �. Let us define eu ¼ u � ½ð!� xÞ � ke1� �
��ðxÞ. Then function ðeu; pÞ satisfies to (1.1)–(1.3) with the homogenous Dirichlet

boundary condition, where f 2 L2
�þ1;�ð�Þ is replaced by some another function

ef 2 L2
�þ1;�ð�Þ, and g by another function eg 2 C1

0 ð�Þ with supp eg ¼ K [ A�,

A� :¼ B� nB�=2 �� � and

Z

�

eg dx ¼ 0:

So, using now Corollary 6.7 we get the assertion of Theorem 6.9. �

Appendix A.

Relation (2.14) follows from an estimate of the derivative of F1:

@

@s
F1 s; rð Þ 
 @

@s
F�;� s; rð Þ � 1� ��1

� �
k�" � � �ð Þs

 �

¼ ���2�2"
1

1þ �r
� 2����"

1

r
� 2��2"2

1þ �r

r

1

1þ "sð Þ2

� k��"þ k��
1

r
1þ 2"sð Þ þ k�" 1þ �rð Þ 1

r

� 1� ��1
� �

k�" � � �ð Þ

� �"
n
r�1 k �="þ �=�ð Þ � ��2 � 2��� � 2��2"=�
� �

þ �2��2"þ k � � �ð Þ=�
� �o

� 0:

The last inequality follows from the fact that we have k�=" � � �2 þ 2 � ��,

k�=� � 2 � �2"=�, kð� � �Þ=� � 2��2" if " � ð1=ð2�ÞÞðk=�Þðð� � �Þ=�2Þ. Hence, if

the last inequality (which is included in the conditions of Lemma 2.5) is satisfied

then ð@=@sÞF1ðs; rÞ � 0. So, we get immediately:

F1 s; rð Þ � F1 0; rð Þ 
 �k�� � ��2�2 1þ �rð Þ�1� ���k 1þ �k�1��
� �

:
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Appendix B.

Let us show that all conditions on �, �, �, ", � used in the proof of Lemma 4.3

are compatible if 0 < � � 1, 0 � � < y1�. Let us collect these assumptions:

0 < � < 2", 1 < � � 2"=� þ �=ð2"Þ � 1, 0 � � < �, " � ð1=ð2�2ÞÞ � ðk=�Þ � ðð� � �Þ=
�2Þ, � � ðk=�Þ � ð�� 1Þ=ð��Þ, � � ð1=ð2�4ÞÞ � ðk=�Þ � ð� �	=ð�þ �ÞÞ2".

From � � ð1=ð2�4ÞÞ � ðk=�Þ � ð� �	=ð�þ �ÞÞ2", and " � ð1=ð2�2ÞÞ � ðk=�Þ �
ðð� � �Þ=�2Þ we get � � ð1=ð4�6ÞÞ � ð�	Þ2ð� � �Þ=ð�þ �Þ2. So we get (� > 1,

� � 1): �=� � ð1=ð4�6ÞÞð1� �=�Þ=ð1þ �=�Þ2. By substitution y ¼ �=� we get the

inequality

4y3 þ 8y2 þ 4yþ ��6 � ðy� 1Þ � 0: ð6.51Þ

Taking into account the condition 0 � � < � we seek for solutions from ½0; 1Þ.
It is clear that the equation 4y3 þ 8y2 þ yþ ��6ðy� 1Þ ¼ 0 has a unique real

solution y� 2 ð0; 1Þ for � > 1. It is also clear that arbitrary y 2 ½0; y�Þ solves (6.51).
The value y� as a function of � is decreasing. For �! 1 we get the inequality

4y3 þ 8y2 þ 5y� 1 � 0. This respective equation has a unique solution

y1 ¼ ð
ffiffiffiffiffi
13

p
=ð6

ffiffiffi
6

p
Þ þ 53=216Þ1=3 þ ð1=30Þð

ffiffiffiffiffi
13

p
=ð6

ffiffiffi
6

p
Þ þ 53=216Þ�1=3. Approximate-

ly, with an error less than 10�8 we have y1 ¼: 0:1582981, (y1 > 1=7). If 0 � � < y1�

then there is � > 1 sufficiently close to number 1, such that 0 � � � y��, so the

relation � � ð1=ð4�6ÞÞ � ð�	Þ2ð� � �Þ=ð�þ �Þ2 is satisfied. Then we can define

" ¼ 1=ð2�2Þ � ðk=�Þ � ðð� � �Þ=ð�2ÞÞ. The relation " � ð1=ð2�ÞÞ � ðk=�Þ � ð1=�Þ is

satisfied. Then we take sufficiently small � > 0 such that 0 < � < 2" and

1 < � � 2"=� þ �=ð2"Þ � 1. Hence, all conditions which we assume in the proof

of Lemma 4.3 are satisfied.
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Šárka NEČASOVÁ
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ON POINTWISE DECAY OF LINEARIZED STATIONARY
INCOMPRESSIBLE VISCOUS FLOW AROUND ROTATING AND

TRANSLATING BODIES∗

PAUL DEURING† , STANISLAV KRAČMAR‡, AND ŠÁRKA NEČASOVÁ§

Abstract. We consider a system arising by linearization of a model for stationary viscous
incompressible flow past a rotating and translating rigid body. Using a fundamental solution proposed
by Guenther and Thomann [J. Math. Fluid Mech., 8 (2006), pp. 77–98], we derive a representation
formula for the velocity field. This formula is then used to obtain pointwise decay estimates and to
identify a leading term with respect to this decay. In addition, we prove a representation theorem
for weak solutions of the stationary Navier–Stokes system with Oseen and rotational terms.

Key words. viscous incompressible flow, rotating body, fundamental solution, decay, Navier–
Stokes system

AMS subject classifications. 35Q30, 65N30, 76D05

DOI. 10.1137/100786198

1. Introduction. We consider the system of equations

−Δu(z)− (U + ω × z) · ∇u(z) + ω × u(z) +∇π(z) = f(z), div u(z) = 0(1.1)

for z ∈ R
3\D.

This system arises by linearization and normalization of a mathematical model de-
scribing the stationary flow of a viscous incompressible fluid around a rigid body
moving at a constant velocity and rotating at a constant angular velocity, under the
assumption that the velocity of the body and its angular velocity are parallel to each
other. The open set D ⊂ R3 describes the rigid body, the vector U ∈ R3\{0} rep-
resents the constant translational velocity of this body, and the vector ω ∈ R3\{0}
represents its constant angular velocity. The given function f : R3\D �→ R3 stands for
an exterior force, and the unknowns u : R3\D �→ R3 and π : R3\D �→ R correspond
respectively to the normalized velocity and pressure field of the fluid. More informa-
tion on the physical background of (1.1) may be found in [22, Chapter 1]. Since (1.1)
is related to the case that translational and angular velocities of the rigid body in
question are parallel, we assume that the vectors U and ω point in the same or in the
opposite direction. If the two types of velocities are not parallel, terms depending on
time have to be included in a suitable mathematical model, and the corresponding
problem has to be studied by different methods. We refer to [12] for more details.
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1, Czech Republic (matus@math.cas.cz). This author was supported by the Academy of Sciences of
the Czech Republic, Institutional Research Plan AV0Z10190503, and by the Grant Agency of the
Academy of Sciences through grant IAA100190804.

705



706 P. DEURING, S. KRAČMAR, AND Š. NEČASOVÁ

We are interested only in the case U �= 0. Thus we may suppose without loss of
generality that there is some τ > 0 with U = −τ (1, 0, 0), and hence ω = �(1, 0, 0) for
some � ∈ R\{0}. In this way we end up with the following variant of (1.1):

L(u) +∇π = f, div u = 0 in R
3\D,(1.2)

where the differential operator L is defined by

L(u)(z) := −Δu(z) + τ ∂1u(z)− (ω × z) · ∇u(z) + ω × u(z)(1.3)

for u ∈ W 2,1
loc (U)3, z ∈ U, U ⊂ R

3 open.

The aim of the work at hand is twofold. First we want to represent suitably regular
functions u : R3\D �→ R3 in terms of L(u) + ∇π, div u, u|∂D, ∇u|∂D, and π|∂D.
Note that we do not suppose divu to vanish. The second aim of this article consists
in using our representation theorem in order to link the decay of |u(x)| and |∇u(x)|
for |x| → ∞ with that of |(L(u)+∇π)(x)| and |div u(x)|. In particular, for a solution
(u, π) of (1.2), we obtain a link between the decay of |u(x)| and |∇u(x)| on the one
hand and the asymptotic behavior of |f(x)| for |x| → ∞ on the other. In addition we
derive an asymptotic profile of u(x) for |x| → ∞, and we extend our representation
formula to weak solutions of the Navier–Stokes system with Oseen and rotational
terms.

The starting point of our theory is a fundamental solution constructed by Guen-
ther and Thomann [27] for the time-dependent variant of (1.1). At the end of their
article, Guenther and Thomann indicate that by integrating their solution with re-
spect to time, they obtain a fundamental solution to (1.1). In [7], we took up this
hint in order to derive a representation formula of the type mentioned above (related
to (1.1) instead of (1.2)); see [7, Theorem 4.3]. However, we assumed u to be C2

and π to be C1, we required a rather strong decay of u(x) and π(x), and we did not
prove some crucial auxiliary results (see [7, inequality (3.6), Lemma 4.1, Theorem
4.1]; compare with the comments in section 2 before Lemma 2.16).

In the present article we consider (1.2) instead of (1.1) to simplify our presen-
tation. This does not mean a loss of generality. We will fill the gaps left in [7] (see
Lemma 2.16 and Theorems 2.17 and 2.18), and we will extend our representation for-
mula to functions u and π with regularity and rate of decay corresponding to those of a
weak solution to (1.2). More precisely, we will assume that u belongs to L6(R3\D)3,
and ∇u and π are L2 in R3\D, and both u and π are locally Lp-regular for some
p > 1 (Theorem 4.6). As a consequence of our representation formula, we will specify
conditions on L(u) +∇π and divu such that

|u(x)| = O
[(

|x|( 1 + τ (|x| − x1)
))−1]

,(1.4)

|∇u(x)| = O
[(

|x|( 1 + τ (|x| − x1)
))−3/2]

for |x| → ∞

(Theorem 5.3). In the case that L(u) + ∇π and div u have compact support, we
will identify an asymptotic profile of u(x) for |x| → ∞ (Theorem 5.4). Finally,
in Theorem 5.5, we will present a representation formula for weak solutions to the
nonlinear problem

−Δu(z) + τ ∂1u(z)− (ω × z) · ∇u(z) + ω × u(z) + τ (u(z) · ∇)u(z) = f(z),(1.5)

div u(z) = 0 for z ∈ R
3\D
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(stationary Navier–Stokes system with Oseen and rotational terms). The key element
of our theory is the fundamental solution of (1.1) mentioned above (which we adapt
to (1.2), of course). Since this solution is only very briefly discussed in [27], we will
present detailed proofs of its key properties, except for some features already set out
in [7].

Our results are the best possible in two respects. First, for the velocity part u of
a solution (u, π) of the Oseen system

−Δu+ τ ∂1u+∇π = f, div u = 0 in R
3\D,(1.6)

the decay rates stated in (1.4) cannot be improved in general. This follows from the
asymptotic expansions in [20, (VII.6.18), (VII.6.20)], and from the behavior of the
Oseen fundamental solution as exhibited in [35, (1.15)]. Since it cannot be expected
that a solution of system (1.2) decays faster than an Oseen flow, the decay rates in
(1.4) should be optimal. Of course, these relations hold only if the right-hand side
f in (1.2) and (1.6), respectively, tends to zero sufficiently fast for |x| → ∞. In this
respect, in view of applications to the nonlinear problem (1.5), it is important to find
decay conditions on f that are as weak as possible but still allow us to maintain (1.4).
For solutions of the Oseen system, such conditions were derived in [35, section 3]. We
obtain inequality (1.4) for solutions of the rotational problem (1.2) under these same
conditions. This is the second optimal feature of our theory.

The work at hand was inspired by Galdi and Silvestre [24], [25], who proved
existence, uniqueness, and decay results for solutions of the linear problem (1.2), and
also for solutions of the nonlinear system (1.5), under Dirichlet boundary conditions.
Concerning decay results pertaining to (1.2), the theory in [24], [25] states that if
(u, π) is a solution to (1.2) with

sup{|u(x)| |x| : x ∈ R
3\BS} < ∞ for some S > 0 with D ⊂ BS(1.7)

(“physical reasonable solution”), if ‖π‖2 < ∞,
∫
∂D u · n(D) dD = 0, if u and π are

locally L2-regular, and if

sup
{
|f(x)|

(
|x|( 1 + τ (|x| − x1)

))5/2
: x ∈ R

3\BS
}
< ∞,(1.8)

then the decay relations in (1.4) hold (see [25, Theorem 3]). Theorem 5.3 below
improves this result in several respects: Assumption (1.8), which is not the best
possible, is replaced by optimal conditions on f , as explained above. Instead of
condition (1.7), we require that u ∈ L6(R3\D)3 and ∇u ∈ L2(R3\D)9. In other
words, we consider weak solutions instead of physical reasonable ones. Moreover we
do not assume the zero flux condition

∫
∂D u · n(D) dD = 0, and we admit the case

div �= 0, although for the estimate of |∇u(x)| indicated in (1.4), we have to require
that the support of divu is compact (Theorem 5.3). Instead of local L2-regularity, we
suppose only local Lp-regularity for an arbitrary p > 1.

The relevance of the work at hand, however, goes beyond some technical improve-
ments of the results in [24] and [25]. To explain this, let us return to the Oseen system
(1.6) and its nonlinear counterpart

−Δu+ τ ∂1u+ τ (u · ∇)u+∇π = f, div u = 0 in R
3\D.(1.9)

Since Finn’s pioneering work [18], [19] at the beginning of the 1960s, a great number
of papers have dealt with the asymptotic properties of solutions to (1.6) or (1.9);
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see [2], [9], [44], [20, section VII.6], [21, section IX.8], [35], [5], [6], [3], for example.
As a consequence of this research work, a rather complete theory is now available
on the asymptotics of Oseen flows. But all the papers just mentioned are based on
estimates of the Oseen fundamental solution introduced in [43]. On the other hand,
concerning (1.2), although a fundamental solution has been known due to Guenther
and Thomann [27], how to estimate this solution was an open problem. For this
reason, the asymptotic behavior of solutions to (1.2) or its nonlinear version (1.5)
had to be studied without making use of a fundamental solution. Therefore it is
not astonishing that our knowledge on the asymptotics of these “rotational flows” is
limited compared to the detailed theory on Oseen flows.

The work at hand should help to change this situation. In fact, our theory should
make it possible to deal with rotational flows in the same way as with Oseen flows, as
concerns the study of asymptotics. In fact, in Lemmas 2.12 and 2.16 and Theorems
2.17 and 2.19 below, we estimate the Guenther–Thomann fundamental solution in
such a way that asymptotic properties of rotational flows become accessible via evalu-
ation of this fundamental solution. This becomes apparent in the proofs of Theorems
5.3 and 5.4, where we derive decay rates and an asymptotic profile of solutions to
the linear problem (1.2). Moreover, our representation formula for solutions to the
nonlinear problem (1.5), combined with our estimates of the Guenther–Thomann fun-
damental solution, might allow one to adapt the theory of the decay of nonlinear Oseen
flows (solutions to (1.9)), as presented in [21, section IX.8], for example, to nonlinear
rotational flows (solutions to (1.5)). But this is a subject we do not take up here.

There is another aspect of our theory we deem interesting. Due to Lemma 2.16
and Theorem 2.17 (decomposition of the Guenther–Thomann fundamental solution
into the usual Stokes fundamental solution and a less singular part), we may possibly
provide an access to a potential-theoretic approach to (1.2). The starting point of
such a theory would be to consider a boundary integral equation consisting of the
same terms as in the well-known Stokes case, plus a compact perturbation. We refer
to [8] for a theory on boundary integral equations related to the Stokes system, and to
[5] for a way to adapt some elements of this theory to the Oseen system. Arguments
similar to those in [5] may be used in the context of (1.2).

As for other previous articles besides [7], [22], [24], [25], [27] pertaining to (1.2),
(1.5) or to the time-dependent counterparts of these equations, we mention [10], [11],
[12], [13], [14], [15], [16], [17], [23], [26], [28], [29], [30], [31], [32], [33], [34], [40], [41],
[42]. Additional references may be found in [22].

It is perhaps interesting to briefly indicate some of the various approaches used
in the preceding references in order to tackle (1.2) or (1.5) or the corresponding time-
dependent equations. In [24], [25], a main idea consists in reducing a boundary value
problem for (1.2) to the Oseen system in the whole space R3. That latter system was
then handled by using the well-known Oseen fundamental solution mentioned above
and studied in [35], for example. As remarked before, the work at hand makes use of
the Guenther–Thomann fundamental solution to (1.2). Other papers deal with (1.2)
or (1.5) in a weighted Sobolev space setting. One may distinguish two variants of this
approach. The first one uses variational calculus in L2-spaces. This method has been
applied in [9] by Farwig and in [36, 37] by Kračmar and Penel in order to solve the
scalar model equations

−νΔu+ k∂3u = f in Ω

and

−νΔu+ k∂3u− a · ∇u = f in Ω,
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respectively, under the boundary conditions u = 0 on ∂Ω and u(x) → 0 as |x| → ∞.
Here Ω is an exterior domain, and a is a function that may be nonconstant and
nonsolenoidal. By Kračmar, Nečasová, and Penel [34], this theory was extended to
(1.2) in an L2-framework with anisotropic weights, yielding a positive answer to the
existence of wake. The second approach involves more general weights in Lq-spaces,
weighted multiplier and Littlewood–Paley theory, as well as the theory of one-sided
Muckenhoupt weights corresponding to one-sided maximal functions. This method
was first introduced by Farwig, Hishida, and Müller [14] (zero velocity at infinity) and
Farwig [10], [11] (nonzero velocity at infinity) for the case that no weight is present,
and then extended to the weighted case by Farwig, Krbec, and Nečasová [15], [16]
and Nečasová and Schumacher [42].

Pointwise estimates, even for solutions of the nonlinear Navier–Stokes equations,
can be found in [23]. Indeed, according to this latter reference, there exists a stationary
strong solution of the nonlinear problem with the velocity part u of this solution
satisfying the estimate |u(x)| ≤ c

|x| . This result must be considered with regard to

the fact that the corresponding fundamental solution of (1.2) cannot be dominated
by |x − y|−1; see [14]. Moreover, this pointwise estimate suggests discussing (1.2) in
weak Lq-spaces (L3/2,∞ and L3,∞) as done in [13], [30]. Stability estimates in the
L2-setting are proved in [25], and in the L3,∞-setting in [31].

2. Notation, definitions, and auxiliary results. If A ⊂ R3, we write Ac for
the complement R3\A of A. The symbol | | denotes the Euclidean norm of R3 and
also the length of a multi-index from N3

0, that is, |α| := α1 +α2 +α3 for α ∈ N3
0. The

open ball centered at x ∈ R3 and with radius r > 0 is denoted by Br(x). If x = 0, we
will write Br instead of Br(0). Put e1 := (1, 0, 0). Let x× y denote the usual vector
product of x, y ∈ R3. Set p′ := (1− 1/p)−1 for p ∈ (1,∞).

We fix parameters τ ∈ (0,∞), � ∈ R\{0}, and we set ω := �e1 and

sτ (x) := 1 + τ (|x| − x1) for x ∈ R
3.

Define the matrix Ω ∈ R
3×3 by

Ω :=

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ = �

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ ,

so that ω × x = Ω · x for x ∈ R3. By the symbol C, we denote constants depending
only on τ or ω. We write C(γ1, . . . , γn) for constants that additionally depend on
parameters γ1, . . . , γn ∈ R for some n ∈ N.

Let D be an open bounded set in R3 with C2-boundary ∂D. This set will be kept
fixed throughout. We denote its outward unit normal by n(D). For T ∈ (0,∞), put
DT := BT \D (“truncated exterior domain”).

For p ∈ [1,∞), k ∈ N, and for open sets A ⊂ R3, we write W k,p(A) for the usual
Sobolev space of order k and exponent p. Its standard norm will be denoted by ‖ ‖k,p.
If B ⊂ R3 is open, define W k,p

loc (B) as the set of all functions g : B �→ R such that
g|U ∈ W k,p(U) for any open bounded set U ⊂ R3 with U ⊂ B. Also we will need the
fractional order Sobolev space W 2−1/p,p(∂D) equipped with its intrinsic norm, which
we denote by ‖ ‖2−1/p, p

(
p ∈ (1,∞)

)
; see [39] for the corresponding definitions. If H

is a normed space whose norm is denoted by ‖ ‖H, and if n ∈ N, we equip the product

space Hn with a norm ‖ ‖(n)H defined by ‖v‖(n)H :=
(∑n

j=1 ‖vj‖2H
)1/2

for v ∈ Hn. But
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for simplicity we will write ‖ ‖H instead of ‖ ‖(n)H . Concerning the term sτ (x), we will
need the following estimates.

Lemma 2.1 (see [9, Lemma 4.3]). Let β ∈ (1,∞). Then∫
∂Br

sτ (x)
−β dox ≤ C(β)r for r ∈ (0,∞).

Lemma 2.2 (see [6, Lemma 4.8]). For x, y ∈ R3, we have

sτ (x − y)−1 ≤ C(1 + |y|)sτ (x)−1.

Lemma 2.3 (see [4, Lemma 2]). Let S ∈ (0,∞), x ∈ BS , t ∈ (0,∞). Then

|x− τ te1|2 + t ≥ C(S)(|x|2 + t).

Lemma 2.4. Let S ∈ (0,∞), x ∈ BcS . Then |x| ≥ C(S)sτ (x).
Proof. |x| ≥ S/2 + |x|/2 ≥ S/2 + (|x| − x1)/4 ≥ min{S/2, 1/(4τ)}sτ (x).
Let K denote the usual fundamental solution to the heat equation, that is,

K(x, t) := (4πt)−3/2 e−|x|2/(4 t) for x ∈ R
3, t ∈ (0,∞).

We recall the definition of the Kummer function 1F1(1, c, u), which is given by

1F1(1, c, u) :=

∞∑
n=0

(
Γ(c)/Γ(n+ c)

)
un for u ∈ R, c ∈ (0,∞),

where the letter Γ denotes the usual gamma function. We will need the following
estimates of 1F1(1, 5/2, u) and K.

Theorem 2.5 (see [38]). Let S ∈ (0,∞). Then there is C(S) > 0 such that for
k ∈ {0, 1, 2},∣∣dk/duk( e−u 1F1(1, 5/2, u)

)∣∣ ≤ C(S)u−3/2−k for u ∈ [S,∞),∣∣dk/duk 1F1(1, 5/2, u)
∣∣ ≤ C(S) for u ∈ [−S, S].

Lemma 2.6 (see [45]). For α ∈ N3
0, l ∈ N0 with |α|+2 l ≤ 2, there is C > 0 such

that ∣∣∂αx ∂ltK(x, t)| ≤ C (|x|2 + t)−3/2−|α|/2−l for x ∈ R
3, t ∈ (0,∞).

Of course, analogous estimates hold for ∂αx ∂
l
tK(x, t) with |α| + 2 l > 2 (with a

constant depending on |α|+ 2 l), but the inequality stated in Lemma 2.6 is sufficient
for our purposes. A similar remark may be made with respect to the inequalities in
Theorem 2.5. Next we put

Hjk(x) := xj xk |x|−2 for x ∈ R
3\{0},

Λjk(x, t) := K(x, t)
(
δjk − Hjk(x) − 1F1

(
1, 5/2, |x|2/(4t) )( δjk/3− Hjk(x)

))
for x ∈ R

3\{0}, t ∈ (0,∞), j, k ∈ {1, 2, 3}. Further put(
Γjk(y, z, t)

)
1≤j,k≤3

:=
(
Λrs(y − τ te1 − e−tΩ · z, t) )

1≤r,s≤3
· e−tΩ
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for y, z ∈ R3, t ∈ (0,∞) with y− τ te1−e−tΩ ·z �= 0. The function (Γjk)1≤j,k≤3 is the
velocity part of the fundamental solution introduced by Guenther and Thomann for
the time-dependent variant of (1.1), here adapted to the time-dependent variant of
(1.2). As explained in [7], the functions Γjk may be considered as smooth functions
in R

3 × R
3 × (0,∞).

Lemma 2.7 (see [7, Corollary 3.1]). The functions Λjk and Γjk may be extended
continuously to R3 × (0,∞) and R3 × R3 × (0,∞), respectively, and these extensions
are C∞-functions (1 ≤ j, k ≤ 3).

In particular we will always consider Λjk and Γjk as functions defined on R3 ×
R3 × (0,∞). We further set

E4j(x) := (4π)−1xj |x|−3 (1 ≤ j ≤ 3, x ∈ R
3\{0}).

Among the properties of Γjk proved in [27], we will use the following ones.
Theorem 2.8 (see [27, Theorem 1.3, Proposition 4.1]). Let j, k ∈ {1, 2, 3}, y, z ∈

R3. Then

∂tΓjk(y, z, t)−ΔzΓjk(y, z, t)− τ ∂z1Γjk(y, z, t) + (ω × z) · ∇zΓjk(y, z, t)(2.1)

−[ω × (Γjs(y, z, t) )1≤s≤3

]
k
= 0

(
t ∈ (0,∞)

)
,

Γjk(y, z, t) → −∂kE4j(y − z) for t ↓ 0 if y �= z.(2.2)

Concerning the matrix Ω, we observe
Lemma 2.9. Let x ∈ R3, t ∈ R. Then

|etΩ · x| = |x|, (etΩ · x)1 = x1, etΩ · e1 = e1.

Proof. For the first equation, we refer to [7, Lemma 2.3]. The second and third
immediately follow from the relation

Ω = �

⎛
⎝ 0 0 0

0 0 −1
0 1 0

⎞
⎠ .

Due to Lemma 2.9, we get the following.
Lemma 2.10.(

Γjk(y, z, t)
)
1≤j,k≤3

= e−tΩ · (Λrs(etΩ · y − τ te1 − z, t)
)
1≤r,s≤3

(2.3)

for y, z ∈ R3, t ∈ (0,∞).
The ensuing lemma, proved in [7], is crucial for estimating

∫∞
0 |Γjk(y, z, t)| dt

when y and z are close to each other.
Lemma 2.11 (see [7, Lemma 2.3]). Let R ∈ (0,∞). Then there are constants

C1, C2 ∈ (0,∞), depending on R, τ , and ω, such that for y, z ∈ BR with y �= z, t ∈
(0, C2] with t ≤ C1 |y − z|, we have

|y − τ te1 − e−tΩ · z| ≥ |y − z|/12.
Note that in [7, Lemma 2.3], constants C1, C2 with the above properties were

given explicitly in terms of R, τ , and ω. The ensuing Lemmas 2.12 to 2.14 were
proved in [7], except inequalities (2.4) and (2.6), which are obvious consequences of
Lemma 2.12.
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Lemma 2.12 (see [7, Lemma 3.2]). For j, k ∈ {1, 2, 3}, x, y, z ∈ R3, t ∈
(0,∞), α ∈ N3

0 with |α| ≤ 1, the inequalities

|∂αxΛjk(x, t)| ≤ C(|x|2 + t)−3/2−|α|/2,

|∂αy Γjk(y, z, t)|+ |∂αz Γjk(y, z, t)| ≤ C(|y − τ te1 − e−tΩ · z|2 + t)−3/2−|α|/2

hold.
Lemma 2.13 (see [7, Theorem 3.1]). Let k ∈ {0, 1}, R ∈ (0,∞), y, z ∈ BR with

y �= z. Then∫ ∞

0

( |y − τ te1 − e−tΩ · z|2 + t
)−3/2−k/2

dt ≤ C(R) |y − z|−1−k.

Due to Lemma 2.12, this means for y, z as above and for j, k ∈ {1, 2, 3}, α ∈ N3
0 with

|α| ≤ 1 that∫ ∞

0

( |∂αy Γjk(y, z, t)|+ |∂αz Γjk(y, z, t)|
)
dt ≤ C(R) |y − z|−1−|α|.

Let x ∈ R3\{0}, and take j, k, α as in the preceding inequality. Then∫ ∞

0

|∂αxΛjk(x, t)| dt ≤ C |x|−1−|α|.(2.4)

Lemma 2.14 (see [7, Lemma 3.3]). Let R ∈ (0,∞), y ∈ BR, ε ∈ (0,∞) with
Bε(y) ⊂ BR, z ∈ BR\Bε(y), x ∈ Bcε , t ∈ (0,∞), j, k ∈ {1, 2, 3}, α ∈ N

3
0 with

|α| ≤ 1. Then

|∂αy Γjk(y, z, t)|+ |∂αz Γjk(y, z, t)| ≤ C(R, ε)(χ(0,1](t) + χ(1,∞)(t)t
−3/2),(2.5)

|∂αxΛjk(x, t)| ≤ C(ε)(χ(0,1](t) + χ(1,∞)(t)t
−3/2).(2.6)

In view of Lemma 2.13, we may define

Zjk(y, z) :=

∫ ∞

0

Γjk(y, z, t) dt, Yjk(x) :=

∫ ∞

0

Λjk(x, t) dt(2.7)

for x ∈ R3\{0}, y, z ∈ R3 with y �= z, j, k ∈ {1, 2, 3}. The function (Zjk)1≤j,k≤3 is
the fundamental solution of (1.2) proposed by Guenther and Thomann in [27].

Lemma 2.15. Let j, k ∈ {1, 2, 3}. Then Zjk ∈ C1
(
(R3 × R3)\{(x, x) : x ∈

R3} ), Yjk ∈ C1(R3\{0}),

∂ynZjk(y, z) =

∫ ∞

0

∂ynΓjk(y, z, t) dt,(2.8)

∂znZjk(y, z) =

∫ ∞

0

∂znΓjk(y, z, t) dt,

∂nYjk(x) =

∫ ∞

0

∂xnΛjk(x, t) dt

for y, z ∈ R3 with y �= z, x ∈ R3\{0}, n ∈ {1, 2, 3}.
If R ∈ (0,∞), y, z ∈ BR with y �= z, α ∈ N3

0 with |α| ≤ 1, we have

|∂αy Zjk(y, z)|+ |∂αz Zjk(y, z)| ≤ C(R) |y − z|−1−|α|.(2.9)
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Proof. Let U, V ⊂ R3 be open and bounded, with U ∩ V �= ∅. Then ε :=
dist(U, V ) > 0, and there is R > 0 with U ∪V ⊂ BR. Therefore inequality (2.5) holds
for y ∈ U, z ∈ V, t ∈ (0,∞). Since

∫∞
0

(
χ(0,1)(t)+χ(1,∞)(t)t

−3/2
)
dt <∞, and in view

of Lemma 2.7, the continuous differentiability of Zjk as well as the first two equations
in (2.8) follow by Lebesgue’s theorem on dominated convergence. Estimate (2.9) is a
consequence of (2.8) and Lemma 2.13. Analogous arguments hold for Yjk.

Next, in Lemma 2.16 and Theorems 2.17 and 2.18, we prove some technical points
that were only stated but not shown in [7]. They constituted a major obstacle in
the proof of a representation formula for smooth functions u : D

c �→ R3 in terms
of L(u) +∇π, div u, and u|∂D (Theorem 4.3). This obstacle consisted in finding a
leading term in a decomposition of ∂znZjk(y, z) such that the remainder term is weakly
singular with respect to surface integrals in R3. The interest of such a decomposition
will become apparent in the proof of Theorem 2.18. The leading term in question is in
fact the function Yjk(y− z), which turns out to coincide with the usual fundamental
solution of the Stokes system.

Lemma 2.16. Let j, k ∈ {1, 2, 3}, x ∈ R3\{0}. Then
Yjk(x) = (8π |x|)−1 (δjk + xj xk |x|−2).

Proof. Abbreviate F(u) := 1F1(1, 5/2, u) for u ∈ R. Then

Yjk(x)(2.10)

=
(
δjk − Hjk(x)

) ∫ ∞

0

K(x, t) dt

+
(−δjk/3 + Hjk(x)

)
(4π)−3/2

∫ ∞

0

t−3/2 e−|x|2/(4 t)F
( |x|2/(4t) ) dt

= (4 |x|)−1π−3/2
((
δjk − Hjk(x)

) ∫ ∞

0

s−3/2 e−1/s ds

+
(−δjk/3 + Hjk(x)

) ∫ ∞

0

s−3/2 e−1/sF(1/s) ds
)

= (4 |x|)−1π−3/2
((
δjk − Hjk(x)

) ∫ ∞

0

t−1/2 e−t dt

+
(−δjk/3 + Hjk(x)

) ∫ ∞

0

t−1/2 e−tF(t) dt
)
.

But
∫∞
0
t−1/2 e−t dt = π1/2 by a result about the gamma function. Therefore, using

the abbreviation

A := (1/4)π−3/2

∫ ∞

0

t−1/2 e−tF(t) dt,

we conclude from (2.10) that

Yjk(x) = (4π |x|)−1
(
δjk − Hjk(x)

)
+A |x|−1

(−δjk/3 + Hjk(x)
)
.(2.11)

But
∫∞
0 t−1/2 e−tF(t) dt = 3π1/2/2, as follows by some standard properties of the

gamma function and by the equation
∑∞

n=1

(
(2n− 1)(2n + 1)

)−1
= 1/2. Therefore

A = 3(8π)−1, so the lemma may be deduced from (2.11).
The ensuing theorem will imply that ∇(Zjk−Yjk) is indeed weakly singular with

respect to surface integrals in R3.
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Theorem 2.17. Let R ∈ (0,∞), y, z ∈ BR with y �= z, j, k, n ∈ {1, 2, 3}. Then∫ ∞

0

|∂znΓjk(y, z, t)− ∂znΛjk(y − z, t)| dt ≤ C(R) |y − z|−3/2.(2.12)

Proof. Abbreviate ε := min{C1 |y − z|, C2}, with C1, C2 from Lemma 2.11. Fur-
ther abbreviate

ψ(y, z, t) := etΩ · y − τ te1 − z for t ∈ (0,∞), F(u) := 1F1(1, 5/2, u) for u ∈ R.

Recalling the choice of ε and referring to Lemmas 2.9 and 2.11, we find for t ∈
(0, ε), ϑ ∈ [0, 1] that

|ψ(y, z, ϑt)| = |y − τ ϑte1 − e−ϑtΩ · z| ≥ C |y − z| ≥ Cε.(2.13)

(Note that in the corresponding inequality [7, (3.7)], the term y + tU − e−tΩ · z was
mistakenly replaced by the letter x.) Starting from (2.3), we split the left-hand side
of (2.12) in the following way:∫ ∞

0

|∂znΓjk(y, z, t)− ∂znΛjk(y − z, t)| dt(2.14)

≤
9∑

ν=1

∫ ε

0

Nν(t) dt+

∫ ∞

ε

|∂znΓjk(y, z, t)| dt+
∫ ∞

ε

|∂znΛjk(y − z, t)| dt,

with

N1(t) :=
∣∣∣ 3∑
l=1

(
(e−tΩ)jl − δjl

)
∂zn

(
Λlk
(
ψ(y, z, t), t

))∣∣∣,
N2(t) :=

∣∣∣∂zn(K(ψ(y, z, t), t )−K(y − z, t)
)(
δjk − Hjk

(
ψ(y, z, t)

))∣∣∣,
N3(t) :=

∣∣∣∂zn(−K(ψ(y, z, t), t )F( |ψ(y, z, t)|2/(4t) )
+K(y − z, t)F

( |y − z|2/(4t) ))(δjk/3− Hjk
(
ψ(y, z, t)

))∣∣∣,
N4(t) :=

∣∣∣∂zn(K(y − z, t)
)(

Hjk
(
ψ(y, z, t)

)− Hjk(y − z)
)∣∣∣,

N5(t) :=
∣∣∣∂zn(K(y − z, t)F

( |y − z|2/(4t) ))(Hjk(ψ(y, z, t) )− Hjk(y − z)
)∣∣∣.

The terms N6(t) to N9(t) are defined in the same way as N2(t) to N5(t), respectively,
but with the derivative ∂zn acting on the second factor instead of the first. For
example, in the definition of the term N6(t), the derivative is applied to the factor
δjk − Hjk

(
ψ(y, z, t)

)
, instead of K

(
ψ(y, z, t), t

)−K(y − z, t) as in the definition of
N2(t).

In order to estimate N1(t), we observe that the eigenvalues of the matrix Ω are
0, i |ω|, and −i |ω|. Therefore there is an invertible matrix A ∈ C3×3 such that

Ω = A ·
⎛
⎝ 0 0 0

0 i |ω| 0
0 0 −i |ω|

⎞
⎠ · A−1,

and hence

e−tΩ = A ·
⎛
⎝ 1 0 0

0 e−i t |ω| 0

0 0 ei t |ω|

⎞
⎠ · A−1,
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so for r, s ∈ {1, 2, 3},

|(e−tΩ)rs − δrs| ≤ C
( |1− cos(|ω|t)|+ | sin(|ω|t)| ) ≤ C t.

Therefore, with Lemma 2.12 and (2.13),

N1(t) ≤ Ct
( |ψ(y, z, t)|2 + t

)−2 ≤ C |ψ(y, z, t)|−2 ≤ Cε−2,

and hence
∫ ε
0
N1(t) dt ≤ Cε−1. In view of estimating N2(t) to N9(t), we observe that

|∂βHjk(x)| ≤ C |x|−|β| for x ∈ R
3\{0}, β ∈ N

3
0 with |β| ≤ 2;(2.15)

|∂ϑ ( |ψ(y, z, ϑt)|2 )| = ∣∣∣ 3∑
m=1

2ψ(y, z, ϑt)m t(Ω · eϑtΩ · y − τ e1)m

∣∣∣(2.16)

≤ C |ψ(y, z, ϑt)|t(1 + |y|) ≤ C(R) |ψ(y, z, ϑt)|t for t ∈ (0, ε), ϑ ∈ [0, 1].

Similarly,

|∂ϑ(ψ(y, z, ϑt)s )| ≤ C(R)t(2.17)

for t, ϑ as before and for s ∈ {1, 2, 3}. In order to obtain an estimate of N2(t), we
apply (2.17), (2.15), and Lemma 2.6 to get

N2(t) ≤ C
∣∣∣∫ 1

0

3∑
s=1

∂zs∂zn

(
K
(
ψ(y, z, ϑt), t

))
∂ϑ
(
ψ(y, z, ϑt)s

)
dϑ
∣∣∣

≤ C(R)

∫ 1

0

( |ψ(y, z, ϑt)|2 + t
)−5/2

t dϑ for t ∈ (0, ε).

By referring to (2.13), we may conclude that N2(t) ≤ C(R)(ε2 + t)−3/2 for t ∈ (0, ε),
so
∫ ε
0
N2(t) dt ≤ C(R)ε−1. Similar arguments yield that

∫ ε
0
N6(t) dt ≤ C(R)ε−3/2.

Turning to N3(t), we find that

N3(t)(2.18)

≤ Ct−3/2
∣∣∣∫ 1

0

∂ϑ ∂zn

(
e−|ψ(y,z,ϑt)|2/(4 t)F

( |ψ(y, z, ϑt)|2/(4t) )) dϑ∣∣∣
= Ct−3/2

∣∣∣∫ 1

0

(
[e−uF(u)]′′|u=|ψ(y,z,ϑt)|2/(4 t)ψ(y, z, ϑt)n (2t)

−1

× ∂ϑ
( |ψ(y, z, ϑt)|2 )(4t)−1

+ [e−uF(u)]′|u=|ψ(y,z,ϑt)|2/(4 t)∂ϑ
(
ψ(y, z, ϑt)n

)
(2t)−1

)
dϑ
∣∣∣

≤ C(R)t−3/2

∫ 1

0

(∣∣ [e−uF(u)]′′ ∣∣|u=|ψ(y,z,ϑt)|2/(4 t) |ψ(y, z, ϑt)|2 t−1

+
∣∣ [e−uF(u)]′ ∣∣|u=|ψ(y,z,ϑt)|2/(4 t)

)
dϑ

≤ C(R)t−3/2

∫ 1

0

(
χ(0,1](u)(u+ 1) + χ(1,∞)(u)u

−5/2
)
|u=|ψ(y,z,ϑt)|2/(4 t) dϑ

≤ C(R)t−3/2

∫ 1

0

u−1 |u=|ψ(y,z,ϑt)|2/(4 t) dϑ ≤ C(R)t−1/2

∫ 1

0

|ψ(y, z, ϑt)|−2 dϑ.
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Note that we applied (2.15) in the first inequality. In the second, we used (2.16) and
(2.17), whereas in the third, we applied Theorem 2.5. Concerning the next-to-last
inequality, we chose the upper bound u−1 in order to obtain suitable negative powers
of t and |ψ(y, z, ϑt)|. Making use of (2.13), we may conclude that∫ ε

0

N3(t) dt ≤ C(R)ε−2

∫ ε

0

t−1/2 dt ≤ C(R)ε−3/2.

By exactly the same references and techniques, one may show that∫ ε

0

N7(t) dt ≤ C(R)ε−3/2.

Next we observe that by (2.15), (2.17), and (2.13),∣∣∣∂zn(Hjk(ψ(y, z, t) )− Hjk(y − z)
)∣∣∣(2.19)

=
∣∣∣∫ 1

0

3∑
s=1

∂zs∂zn

(
Hjk

(
ψ(y, z, ϑt)

))
∂ϑ
(
ψ(y, z, ϑt)s

)
dϑ
∣∣∣

≤ C(R)

∫ 1

0

|ψ(y, z, ϑt)|−2 t dϑ ≤ C(R)ε−2 t.

Now we get with Lemma 2.6 that

N8(t) ≤ C(R)(|y − z|2 + t)−3/2 ε−2 t ≤ C(R)ε−2 t−1/2 for t ∈ (0, ε),

so that
∫ ε
0 N8(t) dt ≤ C(R)ε−3/2. A similar reasoning yields for t ∈ (0, ε) that

N4(t) ≤ C(R)(ε2 + t)−2 ε−1 t ≤ C(R)(ε2 + t)−3/2 ε−1/2,

and hence
∫ ε
0 N4(t) dt ≤ C(R)ε−3/2. We find with Theorem 2.5 and (2.19) that

N9(t) ≤ C(R)t−3/2
∣∣ e−uF(u) ∣∣|u=|y−z|2/(4 t) ε

−2 t

≤ C(R)ε−2 t−1/2
(
χ(0,1](u) + χ(1,∞)(u)u

−3/2
)
|u=|y−z|2/(4 t) ≤ C(R)ε−2 t−1/2

for t ∈ (0, ε), and hence
∫ ε
0 N9(t) dt ≤ C(R)ε−3/2. In the same way we get

∫ ε
0 N5(t) dt ≤

C(R)ε−3/2. It is an immediate consequence of Lemma 2.12 that∫ ∞

ε

|∂znΓjk(y, z, t)| dt+
∫ ∞

ε

|∂znΛjk(y − z, t)| dt ≤
∫ ∞

ε

t−2 dt ≤ Cε−1.

Thus, in view of (2.14), we have shown that the left-hand side of (2.12) is bounded by
C(R)ε−3/2. But since |y − z| ≤ 2R, and by the choice of ε, we have ε ≥ C(R) |y − z|,
so inequality (2.12) follows.

Theorem 2.18. Let j, k ∈ {1, 2, 3}, y ∈ R3, ε0 > 0, μ ∈ (0, 1), and w ∈
Cμ
(
Bε0(y)

)
. Then

∫
∂Bε(y)

3∑
m=1

∂zmZjk(y, z)(y − z)m/εw(z) doz → 2δjkw(y)/3 (ε ↓ 0).(2.20)
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Proof. We choose R > 0 with Bε0(y) ⊂ BR. For ε ∈ (0, ε0], we observe that the

difference of the left- and right-hand sides of (2.20) is bounded by
∑3

ν=1 Nν(ε), with

N1(ε) :=

∫
∂Bε(y)

3∑
m=1

|∂zmZjk(y, z)| |w(z)− w(y)| doz ,

N2(ε) := |w(y)|
3∑

m=1

∫
∂Bε(y)

|∂zmZjk(y, z)− ∂zmYjk(y − z)| doz,

N3(ε) :=
∣∣∣w(y) ∫

∂Bε(y)

3∑
m=1

∂zmYjk(y − z)(y − z)m/ε doz − 2δjkw(y)/3
∣∣∣.

Put

[w]μ := sup{|w(z)− w(z′)| |z − z′|−μ : z, z′ ∈ Bε0(y), z �= z′}.
Let ε ∈ (0, ε0]. Then with (2.9) we find

N1(ε) ≤ C(R)[w]μ

∫
∂Bε(y)

|y − z|−2+μ doz ≤ C(R)[w]μ ε
μ.

Moreover, referring to (2.8) and to Theorem 2.17, we get

N2(ε) ≤ C(R) |w(y)|
∫
∂Bε(y)

|y − z|−3/2 doz ≤ C(R) |w(y)|ε1/2.

Using Lemma 2.16 and noting that
∫
∂B1

ηr ηs doη = 4πδrs/3 for r, s ∈ {1, 2, 3}, we
find ∫

∂Bε(y)

3∑
m=1

∂zmYjk(y − z)(y − z)m/ε doz

= (8π)−1

∫
∂B1

3∑
m=1

(
δjk η

2
m − δjm ηk ηm − δkm ηj ηm + 3ηj ηk η

2
m

)
doη

= 2δjk/3,

so that N3(ε) = 0. Letting ε tend to zero, we obtain the theorem.
To end this chapter, we estimate Zjk(y, z) in the case that |z| ≤ S, |y| ≥ (1+δ)S,

with δ, S > 0 considered as given quantities. This estimate will play a crucial role in
the following.

Theorem 2.19. Let S, δ ∈ (0,∞), ν ∈ (1,∞). Then∫ ∞

0

(|y − τ te1 − e−tΩ · z|2 + t)−ν dt ≤ C(S, δ, ν)
( |y|sτ (y) )−ν+1/2

(2.21)

for y ∈ Bc(1+δ)S , z ∈ BS . In particular,

|∂αy Z(y, z)|+ |∂αz Z(y, z)| ≤ C(S, δ)
( |y|sτ (y) )−1−|α|/2

(2.22)

for y, z as above, j, k ∈ {1, 2, 3}, α ∈ N3
0 with |α| ≤ 1. Moreover

|∂αy Z(y, z)|+ |∂αz Z(y, z)| ≤ C(S, δ)
( |z|sτ (z) )−1−|α|/2

(2.23)

for z ∈ Bc(1+δ)S , y ∈ BS, and for j, k, α as in (2.22).
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Proof. Take y ∈ Bc(1+δ)S , z ∈ BS . We abbreviate y′ := (y2, y3). In what follows,

we will make frequent use of the equation |e−tΩ · z| = |z|; see Lemma 2.9. We
will distinguish several cases. To begin with, we suppose that |y| ≤ 8S. Then, for
t ∈ (0,∞), we get

|y − τ te1 − e−tΩ · z|2 + t ≥ C(S)(|y − e−tΩ · z|2 + t),(2.24)

where we used Lemma 2.3 with 9S instead of S. But since |y| ≥ (1 + δ)S, |z| ≤ S,
we have |y − e−tΩ · z| ≥ |y| − |z| ≥ δS, so that from (2.24),

|y − τ te1 − e−tΩ · z|2 + t ≥ C(S, δ)(1 + t) for t ∈ (0,∞),

and hence∫ ∞

0

(|y − τ te1 − e−tΩ · z|2 + t)−ν dt ≤ C(S, δ, ν)

∫ ∞

0

(1 + t)−ν dt(2.25)

≤ C(S, δ, ν) ≤ C(S, δ, ν) |y|−2ν+1 ≤ C(S, δ, ν)
( |y|sτ (y) )−ν+1/2

,

with the third inequality following from the assumption |y| ≤ 8S, and the last one
from Lemma 2.4. In the rest of this proof, we suppose that |y| ≥ 8S. We note that∫ ∞

0

(|y − τ te1 − e−tΩ · z|2 + t)−ν dt = τ−1

∫ ∞

0

(
γ(y, z, r)2 + r/τ

)−ν
dr,(2.26)

where we used the abbreviation γ(y, z, r) := |y− re1 − e−(r/τ)Ω · z| for r ∈ (0,∞). In
view of the assumption |y| ≥ 8S, another easy case arises if y1 ≤ 0. In fact, we then
have

γ(y, z, r) ≥ |y − re1| − |z| ≥ (|y|2 + r2)1/2 − S ≥ |y|/2 + r/2− S ≥ |y|/4 + r/2

for r ∈ (0,∞), so that γ(y, z, r)2 ≥ C(|y|+ r)2, and hence∫ ∞

0

(
γ(y, z, r)2 + r/τ

)−ν
dr ≤ C(ν)

∫ ∞

0

(|y|+ r)−2ν dr(2.27)

≤ C(ν) |y|−2ν+1 ≤ C(S, ν)
( |y|sτ (y) )−ν+1/2

,

where the last inequality is a consequence of Lemma 2.4. A similar argument holds if
0 ≤ y1 ≤ |y|/2. In fact, since |y| = (y21 + |y′|2)1/2, we then have |y′| = (|y|2 − y21)

1/2 ≥
(3 |y|2/4)1/2 ≥ |y|/2, so we get for r ∈ (0,∞) that

γ(y, z, t) ≥ |y − re1|/2 + |y − re1|/2− |z| ≥ |y − re1|/2 + |y′|/2− S

≥ |y − re1|/2 + |y|/4− S ≥ |y1 − r|/2 + |y|/8,
where the last inequality follows from the assumption |y| ≥ 8S. We thus get∫ ∞

0

(
γ(y, z, r)2 + r/τ

)−ν
dr ≤ C(ν)

∫ ∞

0

(|y|+ |y1 − r|)−2ν dr(2.28)

≤ C(ν)

∫ ∞

y1

(|y|+ r − y1)
−2ν dr ≤ C(ν) |y|−2ν+1 ≤ C(S, ν)

( |y|sτ (y) )−ν+1/2
.

The last of the preceding inequalities follows from Lemma 2.4. From now on we
suppose that y1 ≥ |y|/2. We thus work under the assumption that y1 ≥ |y|/2 ≥ 4S.
Then we note ∫ ∞

0

(
γ(y, z, r)2 + r/τ

)−ν
dr ≤ A1 + A2,(2.29)
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with

A1 :=

∫ y1+2S

y1−2S

(
γ(y, z, r)2 + r/τ

)−ν
dr,

and with A2 defined in the same way as A1, but with the domain of integration
(y1 − 2S, y1 + 2S) replaced by (0,∞)\(y1 − 2S, y1 + 2S). We observe that for
r ∈ (y1 − 2S, y1 + 2S),

r ≥ y1 − 2S ≥ |y|/2− 2S ≥ |y|/4,
because y1 ≥ |y|/2, |y| ≥ 8S. Therefore

A1 ≤
∫ y1+2S

y1−2S

(r/τ)−ν dr ≤ C(ν) |y|−ν
∫ y1+2S

y1−2S

dr ≤ C(S, ν) |y|−ν .(2.30)

On the other hand, for r ∈ (0,∞)\(y1 − 2S, y1 + 2S), we have

γ(y, z, r) ≥ |y − re1| − |z| ≥ |y1 − r| − S ≥ |y1 − r|/2 + |y1 − r|/2− S ≥ |y1 − r|/2,
and hence

A2 ≤
∫
(0,∞)\(y1−2S, y1+2S)

(
(|y1 − r|/2)2 + r/τ

)−ν
dr(2.31)

≤ C(ν)

∫ ∞

0

(|y1 − r|+ r1/2)−2ν dr

≤ C(ν)
(∫ y1/2

0

(y1/2)
−2ν dr +

∫ ∞

y1/2

( |y1 − r|+ (y1/2)
1/2
)−2ν

dr
)

≤ C(ν)
(
y−2ν+1
1 +

∫
R

(|y1 − r| + y
1/2
1 )−2ν dr

)
≤ C(ν)(y−2ν+1

1 + y
−ν+1/2
1 )

≤ C(S, ν) |y|−ν+1/2,

with the last inequality following from the assumption y1 ≥ |y|/2 ≥ 4S. Combining
(2.29)–(2.31) yields∫ ∞

0

(
γ(y, z, r)2 + r/τ

)−ν
dr ≤ C(S, ν) |y|−ν+1/2.

Therefore, if τ (|y| − y1) ≤ max{1, 2τ S}, we have∫ ∞

0

(
γ(y, z, r)2 + r/τ

)−ν
dr ≤ C(S, ν)

( |y|sτ (y) )−ν+1/2
.(2.32)

Thus we are reduced to the case

τ (|y| − y1) ≥ max{1, 2τ S}, y1 ≥ |y|/2 ≥ 4S.

Using the relations τ (|y| − y1) ≥ 1, y1 ≥ 0, we observe that

|y|sτ (y) ≤ |y|2τ (|y| − y1) = 2τ |y| |y′|2/(|y|+ y1) ≤ 2τ |y′|2.(2.33)

We further observe that for r ∈ (0,∞)\(y1 − 2S, y1 + 2S),

γ(y, z, r) ≥ |y − re1| − |z| ≥ |y − re1|/2 + |y1 − r|/2− S ≥ |y − re1|/2
≥ |y1 − r|/4 + |y′|/4,
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so that

A2 ≤ C(ν)

∫
R

(|y1 − r| + |y′|)−2ν ≤ C(ν) |y′|−2ν+1(2.34)

≤ C(ν)
( |y|sτ (y) )−ν+1/2

,

with the last inequality following from (2.33). Using (2.33) again, and recalling that
τ (|y| − y1) ≥ 2τ S, |y| ≥ 4S, we find for r ∈ (0,∞) that

γ(y, z, r) ≥ |y − re1| − |z| ≥ |y′| − S ≥ |y′|/2 + ( (2τ)−1 |y|sτ (y)
)1/2

/2− S

≥ |y′|/2 + (|y|S)1/2/2− S ≥ |y′|/2 + (4S2)1/2/2− S = |y′|/2.
It follows that

A1 ≤ C(ν) |y′|−2ν

∫ y1+2S

y1−2S

dr ≤ C(S, ν) |y′|−2ν(2.35)

≤ C(S, ν)
( |y|sτ (y) )−ν ≤ C(S, ν)

( |y|sτ (y) )−ν+1/2
,

where inequality (2.33) was used once more. By (2.29), (2.34), and (2.35), we see that
inequality (2.32) holds also in the case τ (|y| − y1) ≥ max{1, 2τ S}, y1 ≥ |y|/2 ≥ 4S.
Inequality (2.21) follows with (2.25)–(2.28) and (2.32). As concerns estimate (2.22), it
is an immediate consequence of (2.8), Lemma 2.12, and (2.21) with ν = −3/2−|α|/2.
This leaves us to deal with (2.23). In this respect, we remark that the only property of
Ω we used in the preceding proof is the relation |e−tΩ · x| = |x| for x ∈ R3, t ∈ (0,∞)
(Lemma 2.9). Since this relation holds, of course, for any t ∈ R, and because by
Lemma 2.9,

|y − tτ e1 − e−τ Ω · z| = | − z − tτ e1 − etΩ · (−y)| (y, z ∈ R
3, t ∈ R),

we see that we have proved (2.21) also for z ∈ Bc(1+δ)S and y ∈ BS , but with y

replaced by z on the right-hand side. Now inequality (2.23) follows with (2.8) and
Lemma 2.12.

3. Some volume potentials. The representation formula we have in mind con-
tains volume and surface potentials (Theorem 4.6). In the present section, we study
the volume potentials which will arise. There are two types of such potentials, in-
volving the kernels Zjk and E4j , respectively. We begin by considering the potential
related to Zjk.

Lemma 3.1. Let p ∈ (1,∞), q ∈ (1, 2), f ∈ Lploc(R
3)3 with f |BcS ∈ Lq(BcS)

3 for
some S ∈ (0,∞). Then, for j, k ∈ {1, 2, 3}, α ∈ N3

0 with |α| ≤ 1, we have∫
R3

|∂αy Zjk(y, z)| |fk(z)| dy <∞ for a.e. y ∈ R
3.(3.1)

We define R(f) : R3 �→ R3 by

Rj(f)(y) :=

∫
R3

3∑
k=1

Zjk(y, z)fk(z) dz

for y ∈ R
3 such that (3.1) holds; otherwise we set Rj(f)(y) := 0 (1 ≤ j ≤ 3). Then

R(f) ∈W 1,1
loc (R

3)3 and

∂lRj(f)(y) :=

∫
R3

3∑
k=1

∂ylZjk(y, z)fk(z) dz(3.2)
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for j, l ∈ {1, 2, 3} and for a.e. y ∈ R3. Moreover, for R ∈ (0,∞) we have

‖R(f |BR) |BR‖p ≤ C(R, p)‖f |BR‖p.(3.3)

Proof. Take j, k, α as in (3.1). Let R ∈ (0,∞). Then we find with (2.9) that∫
BR

|∂αy Zjk(y, z)| dz ≤ C(R)

∫
BR

|y − z|−1−|α| dz ≤ C(R)

∫
B2R(y)

|y − z|−1−|α| dz

≤ C(R)

for y ∈ BR, and analogously
∫
BR

|∂αy Zjk(y, z)| dy ≤ C(R) for z ∈ BR. It follows by
Hölder’s inequality that

(∫
BR

(∫
BR

|∂αy Zjk(y, z)| |fk(z)| dz
)p
dy
)1/p

(3.4)

≤
(∫

BR

(∫
BR

|∂αy Zjk(y, z)| dz
)p−1(∫

BR

|∂αy Zjk(y, z)| |f(z)|p dz
)
dy
)1/p

≤ C(R, p)
(∫

BR

∫
BR

|∂αy Zjk(y, z)| |f(z)|p dz dy
)1/p

≤ C(R, p)‖f |BR‖p.

This means in particular that the integral
∫
Bn

|∂αy Zjk(y, z)| |fk(z)| dz is finite for a.e.

y ∈ Bn, n ∈ N, and that inequality (3.3) is proved.
Once again take j, k, α as in (3.1), and let n ∈ N with n ≥ S. Then, using (2.23)

with S replaced by n/2 and with δ = 1/2, we find for y ∈ Bn/2 that∫
Bc

n

|∂αy Zjk(y, z)| |fk(z)| dz ≤ C(n)

∫
Bc

n

( |z|sτ (z) )−1−|α|/2 |f(z)| dz(3.5)

≤ C(n)
(∫

Bc
n

( |z|sτ (z) )−q′ dz)1/q′ ‖f |Bcn‖q ≤ C(n, q)‖f |BcS‖q,

where the last inequality holds due to Theorem 2.1 and the assumption q < 2 (hence
q′ > 2). We thus have shown that the relation in (3.1) holds for a.e. y ∈ Bn/2. Since
this is true for any n ∈ N with n ≥ S, (3.1) is proved. We deduce from (3.4) and (3.5)
that

∫
Bn/2

∫
R3

∣∣∣ 3∑
k=1

∂αy Zjk(y, z)fk(z)
∣∣∣ dz dy ≤ C(n, p, q)(‖f |Bn‖p + ‖f |BcS‖q)(3.6)

for n ∈ N with n ≥ S. This means that Rj(f) ∈ L1,loc(R
3) and that the function

associating a.e. y ∈ R3 with the integral
∫
R3

∑3
k=1 ∂ylZjk(y, z)fk(z) dz also belongs

to L1,loc(R
3) for 1 ≤ l ≤ 3. Now take Φ ∈ C∞

0 (R3)3. Then, by (3.6) and because the
support of Φ is compact,

∫
R3

∂lΦ(y)Rj(f)(y) dy =
3∑

k=1

lim
ε↓0

∫
R3

∫
R3\Bε(z)

∂lΦ(y)Zjk(y, z) dyfk(z) dz.(3.7)

But for any ε > 0, we may perform a partial integration in the inner integral on the
right-hand side of (3.7) (first statement in Lemma 2.15). Due to (2.9), the term with
a surface integral on ∂Bε(z) arising in this way tends to zero for ε ↓ 0. (Note that for
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ε ∈ (0, 1], say, and for y ∈ ∂Bε(z), the integral with respect to z extends over Bn+1

only if n ∈ N is chosen so large that supp(Φ) ⊂ Bn.) After letting ε tend to zero, we
obtain an equation which implies that Rj(f) ∈W 1,1

loc (R
3) and (3.2) holds.

Lemma 3.2. Take p, q, f as in Lemma 3.1, and suppose in addition that p > 3/2.
Then the relation in (3.1) holds for any y ∈ R

3 (without the restriction “a.e.”),
and the function R(f) is continuous.

The general approach for proving this lemma seems to be well known, but we
cannot give a reference (although similar results were shown in [20, section II.9]). So,
for the convenience of the reader, we provide a proof.

Proof. We show that R(f) is continuous. The relation in (3.1) for any y ∈ R3

may be established by a similar but simpler argument.
Let j ∈ {1, 2, 3}, R ∈ (S,∞). It suffices to prove that Rj(f) |BR is continuous.

But for z ∈ Bc2R, y ∈ BR, we get by (2.23) that

∣∣∣ 3∑
k=1

Zjk(y, z)fk(z)
∣∣∣ ≤ C(R)

( |z|sτ (z) )−1 |f(z)|.

Since by a computation as in (3.5) the function

R
3 � z �→ χBc

2R
(z)
( |z|sτ (z) )−1 |f(z)| ∈ [0,∞)

is integrable, we may conclude in view of the first statement of Lemma 2.15 that the
integral

∫
Bc

2R

∑3
k=1 Zjk(y, z)fk(z) dz as a function of y ∈ BR is continuous. Thus we

still have to show that the function

I(y) :=

∫
B2R

3∑
k=1

Zjk(y, z)fk(z) dz (y ∈ BR)

is continuous as well. So take y, y′ ∈ BR with y �= y′. Then

|I(y)− I(y′)| ≤ N1 +N2,(3.8)

with

N1 :=
∑

x∈{y, y′}

∫
BR∩A

3∑
k=1

|Zjk(x, z)fk(z)| dz,

N2 :=

∫
BR\A

∣∣∣∫ 1

0

3∑
k,l=1

∂xlZjk(x, z)|x=y′+ϑ (y−y′) (y − y′)l dϑ
∣∣∣ |fk(z)| dz,

with A := B2 |y−y′|(y). We get with (2.9) that

N1 ≤ C(R)
∑

x∈{y,y′}

∫
BR∩A

|x− z|−1 |f(z)| dz

≤ C(R)
∑

x∈{y,y′}

(∫
B3 |y−y′ |(x)

|x− z|−p′ dz
)1/p′

‖f |BR‖p.

Since p > 3/2, hence p′ < 3, we may conclude that N1 ≤ C(R) |y−y′|−1+3/p′ ‖f |BR‖p,
with −1 + 3/p′ > 0. In order to estimate N2, we note that

|y′ + ϑ(y − y′)− z| ≥ |y − z| − |y − y′| ≥ |y − z|/2 ≥ |y − y′|
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for z ∈ R3\A, ϑ ∈ [0, 1]. Therefore with (2.9), if 2p′ > 3,

N2 ≤ C(R) |y − y′|
(∫

BR\A
|y − z|−2p′ dz

)1/p′
‖f |BR‖p

≤ C(R) |y − y′|−1+3/p′ ‖f |BR‖p.

In the case 2p′ < 3, the factor |y− y′|−1+3/p′ on the right-hand side of the preceding
inequality may be replaced by |y − y′|, and in the case 2p′ = 3 by |y − y′| ln( |y −
y′|/(2R) ). In view of (3.8), we have thus shown that I(y) is a continuous function of
y ∈ BR. This completes the proof of Lemma 3.2.

The crucial idea of the proof of the next theorem consists in reducing an estimate
of R(f) to an estimate of a convolution integral involving an upper bound of an Oseen
fundamental solution. This latter integral may be handled by a reference to [35].

Theorem 3.3. Let S, S1, γ ∈ (0,∞) with S1 < S, p ∈ (1,∞), A ∈ [2,∞), B ∈
R, f : R3 �→ R3 measurable with

f |BS1 ∈ Lp(BS1)
3, |f(z)| ≤ γ |z|−A sτ (z)−B for z ∈ BcS1

, A+min{1, B} ≥ 3.

Let i, j ∈ {1, 2, 3}, y ∈ BcS . Then

|Rj(f)(y)| ≤ C(S, S1, A,B)(‖f |BS1‖1 + γ)
( |y|sτ (y) )−1

lA,B(y),(3.9)

|∂yiRj(f)(y)| ≤ C(S, S1, A,B)(‖f |BS1‖1 + γ)(3.10) ( |y|sτ (y) )−3/2
sτ (y)

max(0, 7/2−A−B) lA,B(y),

where

lA,B(y) =

{
1 if A+min{1, B} > 3,

max(1, ln |y|) if A+min{1, B} = 3.

Proof. By (2.22) with S, δ replaced by S1, S/S1 − 1, respectively, we find for
k ∈ {1, 2, 3}, α ∈ N3

0 with |α| ≤ 1 that∫
BS1

|∂αy Zjk(y, z)| |f(z)| dz ≤ C(S, S1)
( |y|sτ (y) )−1−|α|/2‖f |BS1‖1.(3.11)

Recalling Lemmas 2.15, 2.12, and 2.9, we see that

Aα :=

∫
Bc

S1

|∂αy Zjk(y, z)| |f(z)| dz

≤ Cγ

∫ ∞

0

∫
Bc

S1

(|y − τ te1 − e−tΩ · z|2 + t)−3/2−|α|/2 |z|−Asτ (z)−B dz dt

= Cγ

∫ ∞

0

∫
Bc

S1

(|y − τ te1 − x|2 + t)−3/2−|α|/2 |x|−A sτ (etΩ · x)−B dx dt

= Cγ

∫
Bc

S1

∫ ∞

0

(|y − τ te1 − x|2 + t)−3/2−|α|/2 dt |x|−A sτ (x)−B dx,

where the last equation holds due to the first and second equations in Lemma 2.9.
Now we apply (2.21) with y replaced by y − x and with z = 0. Moreover we use
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Lemma 2.13. It follows that

Aα ≤ C(S)γ
(∫

Bc
S1

∩BS/2(y)

|y − x|−1−|α| |x|−A sτ (x)−B dx(3.12)

+

∫
Bc

S1
\BS/2(y)

( |y − x|sτ (y − x)
)−1−|α|/2 |x|−A sτ (x)−B dx

)
.

Next we observe that for x ∈ BS/2(y), we have |x| ≥ |y| − |y− x| ≥ |y| − S/2 ≥ |y|/2,

sτ (x)
−1 ≤ C(1 + |y − x|)sτ (y)−1 ≤ C(S)sτ (y)

−1

(see Lemma 2.2), and similarly sτ (y)
−1 ≤ C(S)sτ (x)

−1. For x ∈ BS/2(y)
c, we find

|y − x| = |y − x|/2 + |y − x|/2 ≥ S/4 + |y − x|/2 ≥ min{S/4, 1/2}(1 + |y − x|).
Thus, independently of the sign of B, we may conclude from (3.12) that

Aα ≤ C(S, S1, A,B)γ
(
|y|−A sτ (y)−B

∫
BS/2(y)

|y − x|−1−|α| dx(3.13)

+

∫
Bc

S1
\BS/2(y)

(
(1 + |y − x|)sτ (y − x)

)−1−|α|/2
(1 + |x|)−A sτ (x)−B dx

)

≤ C(S, S1, A,B)γ
(
|y|−A sτ (y)−B

+

∫
R3

(
(1 + |y − x|)sτ (y − x)

)−1−|α|/2
(1 + |x|)−A sτ (x)−B dx

)
.

In the case α = 0, we refer to the proof of [35, Theorem 3.1] and our assumptions on
A and B to deduce from (3.13) that

A0 ≤ C(S, S1, A,B)γ
(
|y|−A sτ (y)−B +

( |y|sτ (y) )−1
lA,B(y)

)
.(3.14)

But by Lemma 2.4 and because A− 3/2 > 0, A+B ≥ A+min{1, B} ≥ 3, we have

|y|−A sτ (y)−B ≤ C(S,A) |y|−3/2 sτ (y)
−A+3/2−B(3.15)

≤ C(S,A) |y|−3/2 sτ (y)
−3/2,

so we may conclude from (3.14) that

A0 ≤ C(S, S1, A,B)γ
( |y|sτ (y) )−1

lA,B(y).

Inequality (3.9) follows from (3.11) and the preceding estimate. If |α| = 1, then (3.13)
and the proof of [35, Theorem 3.2] yield

Aα ≤ C(S, S1, A,B)γ(
|y|−A sτ (y)−B +

( |y|sτ (y) )−3/2
sτ (y)

max(0, 7/2−A−B) lA,B(y)
)
.

Hence with (3.15),

Aα ≤ C(S, S1, A,B)γ
( |y|sτ (y) )−3/2

sτ (y)
max(0, 7/2−A−B) lA,B(y).

This estimate together with (3.11) implies (3.10).
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Now we turn to volume integrals involving the kernel E4j .
Lemma 3.4. Let p ∈ (1,∞), q ∈ (1, 3), g ∈ Lploc(R

3) with g|BcS ∈ Lq(BcS) for
some S ∈ (0,∞). Then, for j ∈ {1, 2, 3},∫

R3

|E4j(y − z)| |g(z)| dy <∞ for a.e. y ∈ R
3.(3.16)

Thus we may define S(g) : R3 �→ R3 by

Sj(g)(y) :=

∫
R3

E4j(y − z)g(z) dz

for y ∈ R
3 such that (3.16) holds, otherwise Sj(g)(y) := 0 (1 ≤ j ≤ 3). Then

S(g) ∈W 1,1
loc (R

3)3. For R ∈ (0,∞) we have

‖S(g|BR) |BR‖p ≤ C(R, p)‖g|BR‖p.(3.17)

If p > 3, the relation in (3.16) holds for any y ∈ R3 (without the restriction “a.e.”),
and S(g) is continuous.

Proof. Lemma 3.4 may be shown by arguments analogous to those we used to
prove Lemmas 3.1 and 3.2, except as concerns the claim S(g) ∈ W 1,1

loc (R
3)3. To

establish this latter point, a different reasoning based on the Calderón–Zygmund
inequality is needed because the derivative ∂lE4j is a singular kernel in R

3. We refer
to [20, section IV.2] for details.

Theorem 3.5. Let S, S1, γ̃ ∈ (0,∞) with S1 < S, p ∈ (1,∞), C ∈ (5/2,∞),
D ∈ R, g : R3 �→ R measurable with

g|BS1 ∈ Lp(BS1), |g(z)| ≤ γ̃ |z|−C sτ (z)−D for z ∈ BcS1
, C +min{1, D} > 3.

Let j ∈ {1, 2, 3}, y ∈ BcS . Then

|Sj(g)(y)| ≤ C(S, S1, C,D)(‖g|BS1‖1 + γ̃) |y|−2.(3.18)

If supp(g) ⊂ BS1 , we further have

|∂nSj(g)(y)| ≤ C(S, S1)‖g‖1 |y|−3 (1 ≤ n ≤ 3).(3.19)

Proof. Inequality (3.18) may be proved in the same way as Theorem 3.3, except
that the reference to [35, Theorems 3.1 and 3.2] is replaced by [35, Theorem 3.4], and
that the argument becomes simpler due to the much simpler structure of the kernel
E4j compared to Zjk. As concerns (3.19), observe that |y − z| ≥ (1 − S1/S) |y| for
z ∈ BS1 , so if supp(g) ⊂ BS1 , it is obvious that

Sj(g)|BcS ∈ C1(BcS),

∫
BS1

|∂lE4j(y − z)| |g(z)| dz <∞,

∂lSj(g)(y) =

∫
BS1

∂lE4j(y − z)g(z) dz (1 ≤ l ≤ 3).

Inequality (3.19) now follows.
In the rest of this paper, we will use the following notational convention. If

A ⊂ R
3 is a measurable set and f : A �→ R

3 is a measurable function, if f̃ denotes
the zero extension of f to R3, and if f̃ satisfies the assumptions of Lemma 3.1, we
will write R(f) instead of R(f̃). A similar convention is to hold with respect to S(g)
if g : A �→ R is a measurable function such that its zero extension to R3 verifies the
assumptions of Lemma 3.4.
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4. A representation formula. In this section, we will present (Theorem 4.6)
and prove the representation formula announced in section 1. We begin by two simple
observations related to surface integrals on ∂DR and ∂D, respectively.

Lemma 4.1. Let R ∈ (0,∞) with D ⊂ BR, f ∈ L1(∂DR), j, k ∈ {1, 2, 3}, α ∈
N

3
0 with |α| ≤ 1. Define

F (y) :=

∫
∂DR

∂αz Zjk(y, z)f(z) doz , H(y) :=

∫
∂DR

E4j(y − z)f(z) doz

for y ∈ DR. Then F and H are continuous. Moreover, let x ∈ DR, and put δx :=
dist(∂DR, x). Then

|F (x)|+ |H(x)| ≤ C(δx, R)‖f‖1.(4.1)

Proof. Let U ⊂ R
3 be open, with U ⊂ DR. Then δU := dist(U, ∂DR) > 0, so we

get with (2.9) that

|∂αz Zjk(y, z)f(z)| ≤ C(R)δ
−1−|α|
U |f(z)| for z ∈ ∂DR.

In view of the first statement of Lemma 2.15, we may conclude that F is continuous.
From (2.9), we get that |F (x)| ≤ C(δx, R)‖f‖1. Obviously E4j ∈ C∞(R3\{0}) and
|E4j(x)| ≤ |x|−2 for x ∈ R3\{0}, so the function H may be handled in the same way
(and even belongs to C∞(DR)).

Lemma 4.2. Let S ∈ (0,∞) with D ⊂ BS. Let f ∈ L1(∂D), g ∈ L1(D), j, k ∈
{1, 2, 3}, and define

F (1)(y) :=

∫
∂D

Zjk(y, z)f(z) doz , F (2)(y) :=

∫
D

Zjk(y, z)g(z) dz,

F (3)(y) :=

∫
∂D

E4j(y − z)f(z) doz, F (4)(y) :=

∫
D

∂kE4j(y − z)g(z) dz

for y ∈ D
c
. Then F (i) ∈ C1(D

c
) for 1 ≤ i ≤ 4. Put δ := dist(D, ∂BS). Then

|∂αF (i)(y)| ≤ C(δ, S)
( |y|sτ (y) )−1−|α|/2‖f‖1,(4.2)

|∂αF (j)(y)| ≤ C(δ, S)
( |y|sτ (y) )−1−|α|/2‖g‖1(4.3)

for y ∈ BcS , α ∈ N3
0 with |α| ≤ 1, i ∈ {1, 3}, j ∈ {2, 4}.

Proof. Let U ⊂ R
3 be open and bounded, with U ⊂ D

c
. Let R ∈ (0,∞) with

D ∪ U ⊂ BR. Then an argument as in the proof of Lemma 4.1, based on (2.9) and
Lemma 2.15, yields that F (1)|U ∈ C1(U), and

∂lF
(1)(y) =

∫
∂D

∂ylZjk(y, z)f(z) doz for y ∈ U, 1 ≤ l ≤ 3.(4.4)

It follows that F (1) ∈ C1(D
c
), and that (4.4) holds for y ∈ D

c
. Put S1 := S − δ/2.

Then S1 ∈ (0, S) andD ⊂ BS1 , so inequality (2.22), with S, δ replaced by S1, S/S1−1,
yields

|∂αy Zjk(y, z)f(z)| ≤ C(S, S1)
( |y|sτ (y) )−1−|α|/2 |f(z)|
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for z ∈ ∂D, y ∈ BcS , α ∈ N3
0 with |α| ≤ 1. Now we get with (4.4) that

|∂αF (1)(y)| ≤ C(δ, S)
( |y|sτ (y) )−1−|α|/2‖f‖1

for y, α as before. The function F (2) may be dealt with in a similar way. As for F (3)

and F (4), we note that for y ∈ BcS and z ∈ D, we have |y − z| ≥ (1 − S1/S) |y|. This
observation and Lemma 2.4 yield the estimates of F (3) and F (4) stated in (4.2) and
(4.3), respectively.

In [7, Theorem 4.2], we showed how a smooth function u on a truncated exterior
domain DR may be represented in terms of L(u) + ∇π, div u, u|∂DR, π|∂D, and
∇u|∂D with π : DR �→ R also smooth. For the convenience of the reader, we state
this result in the ensuing Theorem 4.3 and very briefly indicate its proof, which makes
use of Theorem 2.17.

Theorem 4.3. Let R ∈ (0,∞) with D ⊂ R3, and let n(R) : ∂BR ∪ ∂D �→ R3

denote the outward unit normal to DR. Suppose that u ∈ C2(DR)
3, π ∈ C1(DR),

and put F := L(u) +∇π. Let y ∈ DR and j ∈ {1, 2, 3}. Then

uj(y) = Rj(F )(y) +Sj(divu)(y) +

∫
∂DR

A
(R)
j (u, π)(y, z) doz ,(4.5)

where

A
(R)
j (u, π)(y, z)(4.6)

:=
3∑

k=1

[ 3∑
l=1

(
Zjk(y, z)

(
∂luk(z)− δklπ(z) + uk(z)(−τ e1 + ω × z)l

)
− ∂zlZjk(y, z)uk(z)

)
n
(R)
l (z) − E4j(y − z)uk(z)n

(R)
k (z)

]
for y ∈ DR, z ∈ ∂DR.

Indication of a proof. Let ε ∈ (0,∞) with Bε(y) ⊂ DR, and consider the integral

Aj,ε :=

∫
DR\Bε(y)

3∑
k=1

Zjk(y, z)
(
L(u) +∇π)k(z) dz.

By performing some integrations by parts, using (2.1), integrating with respect to t,
and then exploiting (2.2), we obtain

Aj,ε =

∫
DR\Bε(y)

−E4j(y − z)divu(z) dz − Sj,ε(y),

where Sj,ε(y) denotes a surface integral defined in the same way as the surface integral
on the right-hand side of (4.5), but with ∂BR ∪∂D∪∂Bε(y) as domain of integration
instead of ∂BR∪∂D, and with n(R) replaced by the outward unit normal toDR\Bε(y).
Equation (4.5) then follows by a passage to the limit ε ↓ 0, with the calculation of
limε↓0 Sj,ε(y) based on Theorem 2.18. This reasoning requires some applications of
Fubini’s and Lebesgue’s theorems, all of which is made possible by Lemma 2.14.

Our next aim consists in extending (4.5) to functions u and π, which are less
regular than C2 and C1, respectively. We begin by specifying the type of functions
we will consider. From now on we need that ∂D is of class C2. (Theorem 4.3 also
holds if D is only Lipschitz bounded.)
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Theorem 4.4. Let p ∈ (1,∞). Define Mp as the space of all pairs of functions

(u, π) such that u ∈ W 2,p
loc (D

c
)3, π ∈W 1,p

loc (D
c
),

u|DT ∈ W 1,p(DT )
3, π|DT ∈ Lp(DT ), u|∂D ∈W 2−1/p, p(∂D)3,(4.7)

div u|DT ∈W 1,p(DT ), L(u) +∇π|DT ∈ Lp(DT )
3

for some T ∈ (0,∞) with D ⊂ BT . Then u|DT ∈ W 2,p(DT )
3, π|DT ∈ W 1,p(DT ) for

any T ∈ (0,∞) with D ⊂ BT .
Proof. The theorem follows from the regularity theory for the Stokes system. To

be more specific, we first note that our assumptions imply that the relations in (4.7)
hold for all T ∈ (0,∞) with D ⊂ BT . Take such a number T . Let S ∈ (T,∞), and
choose ζ ∈ C∞

0 (R3) with ζ|BT = 1, ζ|BcS = 0. Then

ζ u |DS ∈W 2,p
loc (DS)

3 ∩W 1,p(DS)
3, ζ π |DS ∈W 1,p

loc (DS) ∩ Lp(DS),(4.8)

div (ζ u) |DS ∈ W 1,p(DS),

ζ u | ∂D = u|∂D ∈ W 2−1/p,p(∂D)3, and hence ζ u | ∂DS ∈ W 2−1/p,p(∂DS)
3.

Moreover, since u|DS ∈ W 1,p(DS)
3, L(u) + ∇π |DS ∈ Lp(DS)

3, we have −Δu +
∇π |DS ∈ Lp(DS)

3. Once more observing that u|DS ∈ W 1,p(DS)
3, π|DS ∈ Lp(DS),

we may conclude that

−Δ(ζ u) +∇(ζ π) |DS ∈ Lp(DS)
3.(4.9)

Obviously the function ζ u is a weak solution of the Stokes system in DS with right-
hand side −Δ(ζ u) +∇(ζ π) |DS , where “weak solution” is meant in the sense of [20,
(IV.1.3)]. In view of (4.8) and (4.9), it follows from [20, Lemma IV.6.1, Exercise
IV.6.2] that ζ u |DS ∈ W 2,p(DS)

3, ζ π |DS ∈ W 1,p(DS). This implies that u|DT ∈
W 2,p(DT )

3 and π|DT ∈ W 1,p(DT ).
Now we are in a position to generalize Theorem 4.3 to pairs of functions (u, π) ∈

Mp.
Theorem 4.5. Let p ∈ (1,∞), (u, π) ∈ Mp, j ∈ {1, 2, 3}. Put F := L(u) +∇π.

Take R and n(R) as in Theorem 4.3. Then, for a.e. y ∈ DR,

uj(y) = Rj(F |DR)(y) +Sj(divu|DR)(y) +

∫
∂DR

A
(R)
j (u, π)(y, z) doz ,(4.10)

with A
(R)
j (u, π)(y, z) defined as in (4.6).

If p > 3/2, (4.10) holds for any y ∈ DR (without the restriction “a.e.”).
Proof. By Theorem 4.4, we have u|DR ∈ W 2,p(DR)

3 and π|DR ∈ W 1,p(DR).
Therefore (see [1, (3.18)]) there are sequences (un) in C

∞(R3)3 and (πn) in C
∞(R3)

with

‖(u− un)|DR‖2,p + ‖(π − πn)|DR‖1,p → 0.(4.11)

By a standard trace theorem, it follows that uk|∂DR, ∂luk|∂DR, and π|∂DR belong
to L1(∂DR), and

‖(u− un)|∂DR‖1 + ‖(∂lu− ∂lun)|∂DR‖1 + ‖(π − πn)|∂DR‖1 → 0(4.12)
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for n→ ∞ (1 ≤ k, l ≤ 3). Let y ∈ DR. We may conclude from (4.1) and (4.12) that∫
∂DR

A
(R)
j (un, πn)(y, z) doz →

∫
∂DR

A
(R)
j (u, π)(y, z) doz (n→ ∞),(4.13)

where the definition of A
(R)
j (un, πn)(y, z) should be obvious by (4.6). For n ∈ N, we

set Fn := L(un) +∇πn. By (4.11), we have

‖(Fn − F )|DR‖p → 0, ‖div (u− un)|DR‖p → 0 (n→ ∞).

These relations combined with (3.3) and (3.17) imply

‖Rj

(
(Fn − F )|DR

) |DR‖p + ‖Sj

(
div (un − u)|DR

) |DR‖p → 0 (n → ∞).

Passing from Lp-convergence to pointwise convergence of subsequences, and recalling
(4.11), we see there is a strictly increasing function σ : N �→ N such that

Rj(Fσ(n)|DR)(y) → Rj(F |DR)(y),(4.14)

Sj(divuσ(n)|DR)(y) → Sj(divu|DR)(y), uσ(n)(y) → u(y) (n→ ∞)

for a.e. y ∈ DR. On the other hand, by Theorem 4.3, (4.10) holds with u, π replaced
by un, πn, respectively, for n ∈ N. Therefore we may conclude from (4.13) and (4.14)
that (4.10) holds for a.e. y ∈ DR.

Now suppose that p > 3/2. Since (u, π) ∈ Mp and because of a Sobolev inequality
(in the case p ≤ 3), we may conclude that divu|DR ∈ Lq(DR) for some q ∈ (3,∞).
Recalling the relation F |DR ∈ Lp(DR)

3, we thus see by Lemmas 3.2 and 3.4 with
S = R that R(F |DR) and S(divu|DR) are continuous. Moreover, since p > 3/2
and u|DR ∈ W 2,p(DR)

3, a Sobolev lemma implies that u may be considered as a
continuous function on DR. According to Lemma 4.1, the function associating the

integral
∫
∂DR

A
(R)
j (y, z) doz with each y ∈ DR is also continuous. Thus we may

conclude that (4.10) is valid for any y ∈ DR, without the restriction “a.e.”
Next we perform the transition from a representation formula on DR to one on

D
c
. For this step, we only need the decay properties given implicitly by the relations

in (4.15).
Theorem 4.6. Let p ∈ (1,∞), (u, π) ∈ Mp. Put F := L(u) +∇π, and suppose

there are numbers p1, p2 ∈ (1, 2), S ∈ (0,∞) such that D ⊂ BS ,

u|BcS ∈ L6(BcS)
3, ∇u|BcS ∈ L2(BcS)

9, π|BcS ∈ L2(Bcs),(4.15)

F |BcS ∈ Lp1(BcS)
3 + Lp2(BcS)

3.

Let j ∈ {1, 2, 3}, and put

Bj(y) := Bj(u, π)(y)(4.16)

:=

∫
∂D

3∑
k=1

[ 3∑
l=1

(
Zjk(y, z)

(−∂luk(z) + δklπ(z) + uk(z)(τ e1 − ω × z)l
)

+ ∂zlZjk(y, z)uk(z)
)
n
(D)
l (z) + E4j(y − z)uk(z)n

(D)
k (z)

]
doz

for y ∈ D
c
. Then

uj(y) = Rj(F )(y) +Sj(divu)(y) +Bj(y)(4.17)
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for a.e. y ∈ D
c
. If p > 3/2, (4.17) holds for any y ∈ D

c
, without the restriction

“a.e.”
Proof. The assumptions on u and π yield that∫ ∞

S

∫
∂Br

( |u(z)|6 + |∇u(z)|2 + |π(z)|2 ) doz dr <∞.(4.18)

Therefore there is an increasing sequence (Rn) in (S,∞) with Rn → ∞ and∫
∂BRn

( |u(z)|6 + |∇u(z)|2 + |π(z)|2 ) doz ≤ R−1
n for n ∈ N.(4.19)

Otherwise there would be a constant C ∈ [S,∞) such that∫
∂Br

( |u(z)|6 + |∇u(z)|2 + |π(z)|2 ) doz ≥ r−1 for r ∈ [C,∞),

in contradiction to (4.18). (Here we used a standard convention from the theory of
Lebesgue integration, which states that the integral of every measurable nonnegative
function is defined, but may take the value ∞.) By our assumptions on F , there are
functions G(i) ∈ Lpi(BcS)

3 for i ∈ {1, 2} such that F |BcS = G(1) + G(2). Thus, by
Lemma 3.1,

∫
R3

3∑
k=1

|Zjk(y, z)|
(
χ(0,S](|z|) |Fk(z)|(4.20)

+ χ(S,∞)(|z|)
( |G(1)

k (z)|+ |G(2)
k (z)| )) dz <∞

for a.e. y ∈ D
c
. Moreover, by Lemma 3.4 with q = 2,∫

R3

|E4j(y − z)| |div u(z)| dz <∞(4.21)

for a.e. y ∈ D
c
. Due to these observations and Theorem 4.5, we see there is a subset N

ofD
c
with measure zero such that the relations in (4.20) and (4.21) hold for y ∈ D

c\N ,
and such that (4.10) with R replaced by Rn holds for n ∈ N and y ∈ DR\N . In the
case p > 3/2, Lemma 3.2 yields that (4.20) is valid for any y ∈ D

c
, and Theorem 4.5

implies that (4.10) with R replaced by Rn is true for n ∈ N and any y ∈ D
c
. Moreover,

if p > 3/2, the assumption (u, π) ∈ Mp, Lemma 3.4, and a Sobolev inequality (in the
case p ≤ 3) allow us to drop the restriction “a.e.” in (4.21).

Take y ∈ D
c
in the case p > 3/2, and y ∈ D

c\N otherwise. Let n ∈ N with
Rn > |y| (hence y ∈ DRn). Then, by (4.10) with R replaced by Rn, we get

uj(y) = Rj(F |DRn)(y) +Sj(divu|DRn)(y) + Aj,n(y) +Bj(y),(4.22)

with

Aj,n(y) :=

∫
∂BRn

3∑
k=1

[ 3∑
l=1

(
Zjk(y, z)

(
∂luk(z)− δklπ(z)− τ δ1luk(z)

)
− ∂zlZjk(y, z)uk(z)

)
zl/Rn − E4j(y − z)uk(z)zk/Rn

]
doz.
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Note that in (4.22) we used the relation
∑3
l=1(ω × z)l zl/Rn = 0 for z ∈ ∂BR. The

term Bj(y) was defined in (4.16). Let n ∈ N with Rn/4 ≥ |y|. Observe that

|Aj,n(y)| ≤ C

4∑
ν=1

3∑
k=1

Vν,k(y),(4.23)

with

V1,k(y) :=
(∫

∂BRn

|Zjk(y, z)|6/5 doz
)5/6

‖u|∂BRn‖6,

V2,k(y) :=
(∫

∂BRn

|Zjk(y, z)|2 doz
)1/2

(‖∇u|∂BRn‖2 + ‖π|∂BRn‖2),

V3,k(y) :=

3∑
l=1

(∫
∂BRn

|∂zlZjk(y, z)|6/5 doz
)5/6

‖u|∂BRn‖6,

V4,k(y) :=
(∫

∂BRn

|y − z|−12/5 doz

)5/6
‖u|∂BRn‖6

for k ∈ {1, 2, 3}. Since |y| ≤ Rn/4, we may use inequality (2.23) with S = 2 |y| in
order to estimate |∂αz Zjk(y, z)| for z ∈ ∂BRn , α ∈ N3

0 with |α| ≤ 1. We get by (4.19)
and (2.23) that

V1,k(y) ≤ C(|y|)
(∫

∂BRn

( |z|sτ (z) )−6/5
doz

)5/6
R−1/6
n(4.24)

≤ C(|y|)
(∫

∂BRn

sτ (z)
−6/5 doz

)5/6
R−7/6
n ≤ C(|y|)R−1/3

n ,

where the last inequality follows from Lemma 2.1. The same references yield

|V2,k(y)| ≤ C(|y|)R−1
n , |V3,k(y)| ≤ C(|y|)R−5/6

n (1 ≤ k ≤ 3).(4.25)

Moreover, since |y − z| ≥ |z|/2 for ∂BRn , we find with (4.19) that |V4,k(y)| ≤
C(|y|)R−1/2

n . From (4.23)–(4.25) and the preceding inequality we may conclude that
An,j(y) → 0 for n → ∞. Turning to Rj(F |DRn)(y), we observe that by (4.20), our
choice of y, and Lebesgue’s theorem on dominated convergence, we haveRj(F |DRn)(y)
→ Rj(F )(y) for n → ∞. Moreover, by (4.21) and again by the choice of y and
Lebesgue’s theorem, Sj(divu|DRn)(y) → Sj(divu)(y) for n → ∞. Recalling (4.22),
we thus have proved (4.17).

5. Applications. In our first application of our representation formula (4.17),
we state conditions on L(u) +∇π and divu such that u decays as described in (1.4).
Since in the proof of this result we want to avoid estimates of the second derivatives

of Zjk, we have to transform the integral
∫
∂D

∂zlZjk(y, z)uk(z)n
(D)
l (z) doz appearing

in the definition of Bj(y) (see (4.16)) into a term where no differential operator acts
on Zjk. This is done in the following lemma.

Lemma 5.1. Let p ∈ (1,∞), (u, π) ∈ Mp, j ∈ {1, 2, 3}. Define

Uj(y) := Uj(u)(y) :=

∫
∂D

3∑
k,l=1

∂zlZjk(y, z)uk(z)n
(D)
l (z) doz(5.1)
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for y ∈ D
c
. Let Ep : W 2−1/p,p(∂D) �→ W 2,p(D) denote a continuous extension

operator (see [39]). Then, for y ∈ D
c
,

Uj(y) =

∫
D

3∑
k=1

[
∂kE4j(y − z)Ep(uk)(z) + Zjk(y, z)(5.2)

×
(
(τ e1 − ω × z) · ∇Ep(uk)(z) +

[
ω × (Ep(us)(z) )1≤s≤3

]
k
−ΔEp(uk)(z)

)]
dz

+

∫
∂D

3∑
k,l=1

Zjk(y, z)
(
(−τ e1 + ω × z)luk(z) + ∂lEp(uk)(z)

)
n
(D)
l (z) doz .

Proof. Let y ∈ D
c
. Starting with (2.8), we may refer to Lemma 2.14 in order to

apply Fubini’s theorem and Lebesgue’s theorem on dominated convergence, to obtain

Uj(y) = lim
δ↓0, T→∞

∫ T

δ

∫
∂D

3∑
k,l=1

∂zlΓjk(y, z, t)uk(z)n
(D)
l (z) doz dt.

Next we apply the divergence theorem and then use (2.1). It follows that

Uj(y) = lim
δ↓0, T→∞

∫ T

δ

∫
D

3∑
k=1

(
ΔzΓjk(y, z, t)Ep(uk)(z)

+∇zΓ(y, z, t) · ∇Ep(uk)(z)
)
dz dt(5.3)

= lim
δ↓0, T→∞

[∫ T

δ

∫
D

3∑
k=1

((
∂tΓjk(y, z, t) + (−τ e1 + ω × z) · ∇zΓjk(y, z, t)

− [ω × (Γjs(y, z, t) )1≤s≤3

]
k

)
Ep(uk)(z) − Γjk(y, z, t)ΔEp(uk)(z)

)
dz dt

+

∫ T

δ

∫
∂D

3∑
k,l=1

Γjk(y, z, t)∂lEp(uk)(z)n
(D)
l (z) doz dt

]
.

As explained in the proof of [7, Theorem 4.2], the relation in (2.2) and Lemma 2.14
yield

lim
δ↓0, T→∞

∫ T

δ

∫
D

3∑
k=1

∂tΓjk(y, z, t)Ep(uk)(z) dz dt(5.4)

=

∫
D

3∑
k=1

∂kE4j(y − z)Ep(uk)(z) dz.

For the other terms on the right-hand side of (5.3), the passage to the limit δ ↓ 0
and T → ∞ presents no difficulty because due to Lemma 2.14 we may directly apply
Fubini’s and Lebesgue’s theorems. We further use the formula (a× b) · c = −(a× c) · b
for vectors a, b, c in R

3. In this way, letting δ tend to zero and T to infinity, and
taking account of (5.4), we may deduce (5.2) from (5.3).

Now we may prove a decay estimate for Bj(u, π).
Lemma 5.2. Let p ∈ (1,∞), (u, π) ∈ Mp, j ∈ {1, 2, 3}. Define Bj = Bj(u, π)

as in (4.16). Then Bj ∈ C1(D
c
).
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Let S ∈ (0,∞) with D ⊂ BS. Put δ := dist(D, ∂BS). Let α ∈ N3
0 with |α| ≤ 1,

y ∈ BcS . Then

|∂αBj(y)|(5.5)

≤ C(S, δ)
( ‖∇u | ∂D‖1 + ‖π|∂D‖1 + C̃(D, p)‖u|∂D‖2−1/p,p

)( |y|sτ (y) )−1−|α|/2
,

where C̃(D, p) is a constant depending only on D and p.
Proof. We use the decomposition Bj(y) =

(
Bj(y) − Uj(y)

)
+ Uj(y), with Uj =

Uj(u, π) defined in (5.1). Equation (5.2) and Lemma 4.2 yield that Bj − Uj and Uj
belong to C1(D

c
). Therefore we have Bj ∈ C1(D

c
). Moreover, by (4.2), (4.3), (4.16),

and (5.2),

|∂α(Bj − Uj)(y)|+ |∂αUj(y)|(5.6)

≤ C(S, δ)
( |y|sτ (y) )−1−|α|/2(‖∇u | ∂D‖1 + ‖π|∂D‖1 + ‖u|∂D‖1

+

3∑
k=1

( ‖Ep(uk)‖2,1 + ‖∇Ep(uk) | ∂D‖1
))
,

where the extension operator Ep was introduced in Lemma 5.1. On the other hand,
by a standard trace theorem and by the choice of Ep,

‖∇Ep(uk) | ∂D‖1 ≤ C‖∇Ep(uk) | ∂D‖p ≤ C(p)‖Ep(uk)‖2,p(5.7)

≤ C(p)‖u|∂D‖2−1/p,p,

‖Ep(uk)‖2,1 ≤ C‖Ep(uk)‖2,p ≤ C(p)‖u|∂D‖2−1/p,p(5.8)

for k ∈ {1, 2, 3}. Inequality (5.5) is a consequence of (5.6)–(5.8).
At this point, we are in a position to derive the decay relations (1.4) for u if

L(u) +∇π and divu decay sufficiently fast.
Theorem 5.3. Let p ∈ (1,∞), (u, π) ∈ Mp. Put F := L(u)+∇π. Suppose there

are numbers S1, S, γ ∈ (0,∞), A ∈ [2,∞), B ∈ R such that S1 < S, D ⊂ BS1 ,

u|BcS ∈ L6(BcS)
3, ∇u|BcS ∈ L2(BcS)

9, π|BcS ∈ L2(BcS), supp(div u) ⊂ BS1 ,

A+min{1, B} ≥ 3, |F (z)| ≤ γ |z|−A sτ (z)−B for z ∈ BcS1
.

Put δ := dist(D, ∂BS). Let i, j ∈ {1, 2, 3}, y ∈ BcS. Then

|uj(y)| ≤ C(S, S1, A,B, δ)
(
γ + ‖F |BS1‖1 + ‖divu‖1 + ‖∇u | ∂D‖1(5.9)

+ ‖π|∂D‖1 + C̃(D, p)‖u|∂D‖2−1/p,p

)( |y|sτ (y) )−1
lA,B(y),

|∂iuj(y)|(5.10)

≤ C(S, S1, A,B, δ)
(
γ + ‖F |BS1‖1 + ‖divu‖1 + ‖∇u | ∂D‖1 + ‖π|∂D‖1

+ C̃(D, p)‖u|∂D‖2−1/p,p

)( |y|sτ (y) )−3/2
sτ (y)

max(0, 7/2−A−B) lA,B(y),

where C̃(D, p) was introduced in Lemma 5.2 and function lA,B(y) in Theorem 3.3. If
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the assumption supp(div u) ⊂ BS1 is replaced by the condition

|div u(z)| ≤ γ̃ |z|−C sτ (z)−D for z ∈ BcS1

for some γ̃ ∈ (0,∞), C ∈ (5/2,∞), D ∈ R with C +min{1, D} > 3, then inequality
(5.9) remains valid if the term ‖divu‖1 on the right-hand side of (5.9) is replaced by
γ̃ + ‖divu|BS1‖1. Of course, in that case the constant in (5.9) additionally depends
on C and D.

Note that if A +min{1, B} > 3, A + B ≥ 7/2 in Theorem 5.3, then lA,B(y) = 1
in (5.9) and sτ (y)

max(0, 7/2−A−B) lA,B(y) = 1 in (5.10). The preceding conditions on
A and B are verified if, for example, A = 5/2, B = 1, or B = 3/2 and A = 2 + ε for
some ε ∈ (0, 1/2).

Proof of Theorem 5.3. By Lemma 2.1, we see that
∫
Bc

S1

|F (z)|r dz < ∞ for any

r ∈ (1,∞). Thus Theorem 4.6 yields that the representation formula (4.17) holds
for a.e. y ∈ D

c
. Therefore Theorem 5.3 follows from Theorems 3.3 and 3.5 and

Lemma 5.2.
In the next theorem, we present an asymptotic profile of u for the case that

L(u) +∇π and divu have compact support.
Theorem 5.4. Let p ∈ (1,∞), (u, π) ∈ Mp, S, S1 ∈ (0,∞) with S1 < S, and

put F := L(u) +∇π. Suppose that

D ∪ supp(F ) ∪ supp(div u) ⊂ BS1 ,

u|BcS ∈ L6(BcS)
3, ∇u|BcS ∈ L2(BcS)

9, π|BcS ∈ L2(Bcs).

Then there are coefficients β1, β2, β3 ∈ R and functions F1,F2,F3 ∈ C0(BcS) such that
for j ∈ {1, 2, 3}, y ∈ BcS,

uj(y) =

3∑
k=1

βkZjk(y, 0)(5.11)

+
(∫

∂D

u · n(D) doz +

∫
BS1

div u dz
)
E4j(y) + Fj(y)

and

|Fj(y)| ≤ C(S, S1)
( ‖F‖1 + ‖divu‖1 + ‖∇u | ∂D‖1 + ‖π|∂D‖1(5.12)

+ C(D, p)‖u|∂D‖2−1/p,p

)( |y|sτ (y) )−3/2
,

where C(D, p) > 0 depends only on D and p. (Note that |E4j(y)| ≤ C |y|−2 and

|y|−2 ≤ C(S)
( |y|sτ (y) )−1

for y ∈ BcS; see Lemma 2.4.)
Proof. Take j ∈ {1, 2, 3}, y ∈ BcS . Observe that

|y − ϑz| ≥ |y| − S1 ≥ (1− S1/S) |y| > 0 for z ∈ BS1 , ϑ ∈ [0, 1].(5.13)

In view of Lemma 2.15, we may conclude that the term Zjk(y, ϑz) is continuously
differentiable with respect to ϑ ∈ [0, 1], for any z ∈ BS1 and k ∈ {1, 2, 3}, with
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obvious derivatives. Therefore we may define

Fj(y)

:=

∫
BS1

( 3∑
k,s=1

∫ 1

0

∂xsZjk(y, x)|x=ϑz dϑzsFk(z)

−
3∑
s=1

∫ 1

0

∂sE4j(y − ϑz) dϑzsdiv u(z)

)
dz

+

∫
∂D

( 3∑
k,s=1

∫ 1

0

∂xsZjk(y, x)|x=ϑz dϑzs

×
3∑
l=1

(−∂luk(z) + δklπ(z) + ∂lEp(uk)(z)
)
n
(D)
l (z)

−
3∑
s=1

∫ 1

0

∂sE4j(y − ϑz) dϑzsuk(z)n
(D)
k (z)

)
doz

+

∫
D

3∑
k=1

(
∂kE4j(y − z)Ep(uk)(z)

+

3∑
s=1

∫ 1

0

∂xsZjk(y, x)|x=ϑz dϑzs
(
(τ e1 − ω × z) · ∇Ep(uk)(z)

+
[
ω × (Ep(us)(z) )1≤s≤3

]
k
−ΔEp(uk)(z)

))
dz,

where the extension operator Ep was introduced in Lemma 5.1. We further set

βk :=

∫
BS1

Fk(z) dz +

∫
∂D

3∑
l=1

(−∂luk(z) + δklπ(z) + ∂lEp(uk)(z)
)
n
(D)
l (z) doz

+

∫
D

(
(τ e1 − ω × z) · ∇Ep(uk)(z)

+
[
ω × (Ep(us)(z) )1≤s≤3

]
k
−ΔEp(uk)(z)

)
dz.

Then, referring to (4.17), (4.16), (5.1), and (5.2), we obtain (5.11). By (5.13), the
choice of Ep in Lemma 5.1, and (2.22), we further find

|Fj(y)| ≤ C(S, S1)
( |y|sτ (y) )−3/2

(
‖F‖1 + ‖∇u | ∂D‖1 + ‖π|∂D‖1(5.14)

+
3∑

k=1

( ‖∇Ep(uk) | ∂D‖1 + ‖Ep(uk)‖2,1
))

+ C(S, S1) |y|−3
(
‖div u‖1 + ‖u|∂D‖1 +

3∑
k=1

‖Ep(uk)‖1
)
.

Inequality (5.14), Lemma 2.4, and (5.7) imply (5.11).
Finally we use (4.17) in order to obtain a representation formula for weak solutions

of the stationary Navier–Stokes system with Oseen and rotational terms.
Theorem 5.5. Let u ∈ W 1,1

loc (D
c
)3 ∩ L6(D)3 with ∇u ∈ L2(D)9. Let π ∈ L2(D),

p ∈ (1,∞), q ∈ (1, 2), and let f : D
c �→ R3 be a function with f |DT ∈ Lp(DT )

3 for

T ∈ (0,∞) with D ⊂ BT , f |BcS ∈ Lq(BcS)
3 for some S ∈ (0,∞) with D ⊂ BS.



736 P. DEURING, S. KRAČMAR, AND Š. NEČASOVÁ

Suppose that the pair (u, π) is a weak solution of the Navier–Stokes system with
Oseen and rotational terms, and with right-hand side f , that is,∫

D
c

(
∇u · ∇ϕ+

(
τ (u · ∇)u+ τ ∂1u− (ω × z) · ∇u+ ω × u

) · ϕ+ πdivϕ
)
dz

=

∫
D

c
f · ϕ dz for ϕ ∈ C∞

0 (D
c
)3, div u = 0.

Then

uj(y) = Rj

(
f − τ (u · ∇)u

)
(y) +Bj(u, π)(y)(5.15)

for j ∈ {1, 2, 3} and for a.e. y ∈ D
c
, where Bj(u, π) was defined in (4.16).

Proof. Since u ∈ L6(D)3 and ∇u ∈ L2(D)9, Hölder’s inequality yields τ (u ·∇)u ∈
L3/2(D

c
)3. It further follows that the term τ ∂1u(z) − (ω × z) · ∇u(z) + ω × u(z),

considered as a function of z ∈ DT , belongs to L2(DT )
3 for any T ∈ (0,∞) with

D ⊂ BT . Therefore, putting

F (z) := f(z)− τ
(
u(z) · ∇ )u(z)− τ ∂1u(z) + (ω × z) · ∇u(z)− ω × u(z)

for z ∈ D
c
, we see that F |DT ∈ Lmin{p,3/2}(DT )

3 for T as above. Thus, considering
the pair (u, π) as a weak solution (in the sense of [20, (IV.1.3)]) of the Stokes system
with right-hand side F , we may refer to [20, Theorem IV.4.1] (interior regularity for
the Stokes system), to obtain that

u|DT ∈ W
2,min{p,3/2}
loc (DT )

3, π|DT ∈W
1,min{p,3/2}
loc (DT ) (T as above),

−Δu+∇π = F, and hence L(u) +∇π = f − τ (u · ∇)u.

As τ (u · ∇)u ∈ L3/2(D
c
)3, we now conclude that L(u) +∇π |DT ∈ Lmin{p,3/2}(DT )

3

for T as above, so (u, π) ∈ Mmin{p,3/2}. The preceding observations mean that
the assumptions of Theorem 4.6 are satisfied with p, p1 replaced by, respectively,
min{p, 3/2} and q, and with p2 = 3/2. Thus (5.15) follows from Theorem 4.6.
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pressible viscous heat-conducting gas coupled with radiation through a radiative transfer
equation. Assuming suitable hypotheses on the transport coefficients, we prove that the
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1. Introduction

The aim of radiation hydrodynamics is to include the effects of radiation into the hydrodynamical framework. When
equilibrium holds between the matter and the radiation, a simple way to do that is to include local radiative terms into
the state functions and the transport coefficients. One knows from quantum mechanics that radiation is described by its
quanta, the photons, which are massless particles traveling at the speed c of light, characterized by their frequency ν,
their energy E = hν (where h is Planck’s constant), and their momentum Ep = h̄ν

c
EΩ , where EΩ is a unit vector. Statistical

mechanics allows us to describe macroscopically an assembly of massless photons of energy E and momentum Ep by using a
distribution function: the radiative intensity I(r, t, EΩ, ν). Using this fundamental quantity, one can derive global quantities
by integrating with respect to the angular and frequency variables: the spectral radiative energy density ER(r, t) per unit
volume is then ER(r, t) := 1

c

∫∫
I(r, t, EΩ, ν) dΩ dν, and the spectral radiative flux EFR(r, t) =

∫∫
EΩ I(r, t, EΩ, ν) dΩ dν. If

matter is in thermodynamic equilibrium at constant temperature T and if radiation is also in thermodynamic equilibrium
with matter, its temperature is also T and statistical mechanics tells us that the distribution function for photons is given by
the Bose–Einstein statistics with zero chemical potential.
In the absence of radiation, one knows that the complete hydrodynamical system is derived from the standard

conservation laws of mass, momentum and energy by using Boltzmann’s equation satisfied by the fm(r, Ev, t) and the
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Chapman–Enskog expansion [1]. One gets then formally the compressible Navier–Stokes system
∂tρ +∇ · (ρEu) = 0,
∂t(ρEu)+∇ · (ρEu⊗ Eu) = −∇·

⇒

Π +Ef ,
∂t(ρε)+∇ · (ρεEu) = −∇Eq−

⇒

D:
⇒

Π + g,
(1)

where
⇒

Π= −p(ρ, T )
⇒

I +
⇒

π is the material stress tensor for a newtonian fluid with the viscous contribution
⇒

π= 2µ
⇒

D
+λ∇ · Eu

⇒

I with 3λ + 2µ > 0 and µ > 0, and the strain tensor
⇒

D such that
⇒

D ij(Eu) = 1
2

(
∂ui
∂xj
+

∂uj
∂xi

)
. Eq is the thermal heat

flux and EF and g are external force and energy source terms.
When radiation is present, the terms Ef and g include the terms for the coupling between the matter and the radiation

(neglecting any other external field), depending on I , and I is driven by a transport equation: the so called radiative transfer
integro-differential equation discussed by Chandrasekhar in [2].
Supposing that the matter is at LTE, the coupled system reads

∂tρ +∇ · (ρEu) = 0,
∂t(ρEu)+∇ · (ρEu⊗ Eu) = −∇·

⇒

Π − ESF ,

∂t(ρε)+∇ · (ρεEu) = −∇Eq−
⇒

D:
⇒

Π −SE,
1
c
∂

∂t
I
(
r, t, EΩ, ν

)
+ EΩ · ∇I

(
r, t, EΩ, ν

)
= St

(
r, t, EΩ, ν

)
,

(2)

where the coupling terms are

St(r, t, EΩ, ν) = σa

(
ν, EΩ, ρ, T ,

EΩ · Eu
c

) [
B(ν, T )− I

(
r, t, EΩ, ν

)]
+

∫∫
σs
(
r, t, ρ, EΩ ′ · EΩ, ν ′ → ν

)
×

{
ν

ν ′
I
(
r, t, EΩ ′, ν ′

)
I
(
r, t, EΩ, ν

)
− σs

(
r, t, ρ, EΩ · EΩ ′, ν → ν ′

)
I
(
r, t, EΩ, ν

)
I
(
r, t, EΩ ′, ν ′

)}
dΩ ′ dν ′,

the radiative energy source

SE(r, t) :=
∫∫

St(r, t, EΩ, ν) dΩ dν,

the radiative flux

ESF (r, t) :=
1
c

∫∫
EΩ St(r, t, EΩ, ν) dΩ dν.

In the radiative transfer equation (the last Eq. (2)) the functions σa and σs describe in a phenomenological way the
absorption–emission and scattering properties of the photon–matter interaction, and Planck’s function B(ν, θ) describes
the frequency–temperature black body distribution.
Let us note that the foundations for the previous system were described by Pomraning [3] and Mihalas and Weibel-

Mihalas [4] in the full framework of special relativity (oversimplified in the previous considerations). The coupled system
(2) has been investigated recently (in the inviscid case) by Lowrie, Morel and Hittinger [5], Buet and Després [6] with special
attention paid to asymptotic regimes, and by Dubroca and Feugeas [7], Lin [8] and Lin, Coulombel and Goudon [9] as regards
numerical aspects. As regards the existence of solutions, a proof of local-in-time existence and blow-up of solutions (in
the inviscid case) has been proposed by Zhong and Jiang [10] (see also the recent papers by Jiang and Wang [11,12] for
a 1D related ‘‘Euler–Boltzmann’’ model). Moreover, a simplified version of the system has been investigated by Golse and
Perthame [13].
As the multidimensional viscous situation is far from been understood even at the formal level (however see [14] for a

macroscopic treatment of radiation in the astrophysical context, and [15] for the associated mathematical treatment), we
restrict the following to the monodimensional case.
In 1D the previous system reads

ρτ + (ρv)y = 0,
(ρv)τ + (ρv

2)y + py = µvyy − (SF )R ,[
ρ

(
e+

1
2
v2
)]

τ

+

[
ρv

(
e+

1
2
v2
)
+ pv − κθy − µvvy

]
y
= −(SE)R,

1
c
It + ωIy = S.

(3)
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In this preliminary study we only consider an ‘‘infrarelativistic’’ model of a compressible Navier–Stokes system for a 1D
flow coupled to a the radiative transfer equation. As in the model studied by Amosov [16], we suppose that the fluid motion
is so small with respect to the velocity of light c that one can drop all the 1c factors in the previous formulation. We get then

ρτ + (ρv)y = 0,
(ρv)τ + (ρv

2)y + py = µvyy,[
ρ

(
e+

1
2
v2
)]

τ

+

[
ρv

(
e+

1
2
v2
)
+ pv − κθy − µvvy

]
y
= −(SE)R,

ωIy = S,

(4)

in the domain O × R+ with O := (0, L), where the density ρ, the velocity v, the temperature θ depend on the coordinates
(y, τ ). The radiative intensity I = I(y, τ , ν, ω), depends also on two extra variables: the radiation frequency ν ∈ R+ and
the angular variable ω ∈ S1 := [−1, 1]. The state functions are the pressure p, the internal energy e, the heat conductivity
κ and the viscosity coefficient µ.
In the standard radiative transfer equation, the source term is

S(y, τ , ν, ω) := Sa,e(y, τ , ν, ω)+ Ss(y, τ , ν, ω), (5)

where the absorption–emission term is

Sa,e(y, τ , ν, ω) = σa(ν, ω; ρ, θ) [B(ν; θ)− I(y, τ , ν, ω)] , (6)

and the scattering term is

Ss(y, τ , ν, ω) = σs(ν; ρ, θ)
[
Ĩ(y, τ , ν, θ)− I(y, τ , ν, ω)

]
, (7)

where Ĩ(y, τ , ν) := 1
2

∫ 1
−1 I(y, τ , ν, ω) dω and B is a function of temperature and frequency describing the equilibrium state.

We suppose that σa(ν, ω; ρ, θ) and σs(ν; ρ, θ) are positive functions. We also define the radiative energy

ER :=
∫ 1

−1

∫
∞

0
I(y, τ , ν, ω) dν dω, (8)

the radiative flux

FR :=
∫ 1

−1

∫
∞

0
ωI(y, τ , ν, ω) dν dω, (9)

and the radiative energy source

(SE)R :=
∫ 1

−1

∫
∞

0
S(y, τ , ν, ω) dν dω. (10)

It is convenient to switch now to Lagrange (mass) coordinates relative to matter flow: (y, τ ) → (x, t). With the transfor-
mation rules [17]: ∂y → ρ∂x and ∂τ + v∂y → ∂x, the previous system reads now

ηt = vx,
vt = σx,(
e+

1
2
v2
)
t
= (σv − q)x − η(SE)R,

ωIx = ηS,

(11)

in the transformed domain Q := Ω × R+ with Ω := (0,M) (M is the total mass of matter), where the specific volume η
(with η := 1

ρ
), the velocity v, the temperature θ and the radiative intensity I depend nowon the lagrangianmass coordinates

(x, t). We also denote by σ := −p+µ vx
η
the stress and by q := −κ θx

η
the heat flux, and the source term in the last equation is

S(x, t, ν, ω) = σa(ν, ω; η, θ) [B(ν; θ)− I(x, t; ν, ω)]+ σs(ν; η, θ)
[
Ĩ(x, t, ν)− I(x, t, ν, ω)

]
. (12)

We consider Dirichlet–Neumann boundary conditions for the fluid unknowns{
v|x=0 = v|x=M = 0,
q|x=0 = q|x=M = 0,

(13)

and transparent boundary conditions for the radiative intensity{
I|x=0 = 0 for ω ∈ (0, 1)
I|x=M = 0 for ω ∈ (−1, 0), (14)
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for t > 0, and initial conditions

η|t=0 = η
0(x), v|t=0 = v

0(x), θ |t=0 = θ
0(x), onΩ (15)

and

I|t=0 = I(x, ν, ω) onΩ × R+ × S1. (16)

Pressure and energy are related by the thermodynamical relation

eη(η, θ) = −p(η, θ)+ θpθ (η, θ). (17)

Finally we assume that state functions e, p and κ (resp. σa,e and σs) are C2 (resp. C0) functions of their arguments for
0 < η <∞ and 0 6 θ <∞, and we suppose the following growth conditions:

e(η, 0) > 0, c1(1+ θ r) 6 eθ (η, θ) 6 C1(1+ θ r),
−c2η−2(1+ θ1+r) 6 pη(η, θ) 6 −C2η−2(1+ θ1+r),
|pθ (η, θ)| 6 C3η−1(1+ θ r),
c4(1+ θ1+r) 6 ηp(η, θ) 6 C4(1+ θ1+r), pη(η, θ0) 6 0,
0 6 p(η, θ) 6 C5(1+ θ1+r),
c6(1+ θ q) 6 κ(η, θ) 6 C6(1+ θ q),
|κη(η, θ)| + |κηη(η, θ)| 6 C7(1+ θ q),
ησa(ν, ω; η, θ)Bm(ν; θ) 6 C8|ω|θα+1f (ν, ω) form = 1, 2,
σa(ν, ω; η, θ) 6 C9g(ν, ω),[∣∣(σa)η∣∣+ |(σa)θ |] (ν, ω; η, θ) [1+ B(ν; θ)+ |Bθ (ν; θ)|] 6 C10h(ν, ω),
σs(ν; η, θ) 6 C11k(ν, ω),

(18)

where r ∈ [0, 1], q > 2r + 1, 0 6 α < r , the numbers cj, Cj, j = 1, . . . , 10, are positive constants and the functions f , g, h, k
are such that

f , g, h ∈ L1(R+ × S1) ∩ L∞(R+ × S1),

and

k ∈ L1+γ (R+ × S1) ∩ L∞(R+ × S1),

for an arbitrary small γ > 0.
We suppose also that the viscosity coefficient is a positive constant.
We study weak solutions for the above problem with properties

η ∈ L∞(QT ), ηt ∈ L∞([0, T ], L2(Ω)),
v ∈ L∞([0, T ], L4(Ω)), vt ∈ L∞([0, T ], L2(Ω)), vx ∈ L∞([0, T ], L2(Ω)),
σx ∈ L∞([0, T ], L2(Ω)),
θ ∈ L∞([0, T ], L2(Ω)), θx ∈ L∞([0, T ], L2(Ω)),
I ∈ L1(Ω × R+ × S1)

(19)

where QT := Ω × (0, T ).
We also assume the following conditions on the data:

η0 > 0 onΩ, η0 ∈ L1(Ω),
v0 ∈ L2(Ω), v0x ∈ L

2(Ω),

θ0 ∈ L2(Ω), inf
Ω
θ0 > 0.

(20)

Then our definition of a weak solution for the previous problem is the following:

Definition 1.1. We call (η, v, θ, I) a weak solution of (11) if it satisfies

η(x, t) = η0(x)+
∫ t

0
vx ds, (21)

for a.e. x ∈ Ω and any t > 0, and if, for any test function φ ∈ L2([0, T ],H1(Ω)) with φt ∈ L1([0, T ], L2(Ω)) such that
φ(·, T ) = 0, one has∫

Q

[
φtv + φxp−

µφx

η
vx

]
dx dt =

∫
Ω

φ(0, x) v0(x) dx, (22)∫
Q

[
φt

(
e+

1
2
v2
)
+ φx (σv − q)+ φη(SE)R

]
dx dt =

∫
Ω

φ(0, x)
(
e0(x)+

1
2
v0(x)2

)
dx, (23)
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and if, for any test function ψ ∈ H1(Ω)× L1(R+ × S1), one has∫
R+×S1

[ψxωI + ψηS] dν dω dx = 0. (24)

In the following we use the following notation for the integrated radiative intensity:

I(x, t) :=
∫
∞

0

∫
S1
I(x, t;ω, ν) dω dν.

Then our main result is the following:

Theorem 1. Suppose that the initial data satisfy (20) and that T is an arbitrary positive number.
Then the problem (11), (13) and (15) possesses a global weak solution satisfying (19) together with properties (21), (22)

and (23).

Moreover one has the uniqueness result.

Theorem 2. Suppose that the initial data satisfy (20) and that T is an arbitrary positive number.
Then the problem (11), (13) and (15) possesses a global unique weak solution satisfying (19) together with properties (21),

(22) and (23).

For that purpose, we first prove a classical existence result in the Hölder category.We denote by Cα(Ω) the Banach space
of real-valued functions onΩ which are uniformly Hölder continuous with exponent α ∈ Ω , and by Cα,α/2(QT ) the Banach
space of real-valued functions on QT := Ω × (0, T ) which are uniformly Hölder continuous with exponent α in x and α/2
in t . The norms of Cα(Ω) (resp. Cα,α/2(QT )) will be denoted by ‖ · ‖α (resp. ||| · |||α).

Theorem 3. Suppose that the initial data satisfy(
η0, η0x , v

0, v0x , v
0
xx, θ

0, θ0x , θ
0
xx

)
∈ (Cα(Ω))8 ,

for some α ∈ Ω . Suppose also that η0(x) > 0, θ0(x) > 0 and I0(x) > 0 onΩ , and that the compatibility conditions

θ0x (0) = θ
0
x (M) = 0,

hold. Then, there exists a unique solution (η(x, t), v(x, t), θ(x, t), I(x, t)) with η(x, t) > 0, I(x, t) > 0 and θ(x, t) > 0 to the
initial–boundary value problem (11), (13)–(16) on Q = Ω × R+ such that for any T > 0

(η, ηx, ηt , ηxt , v, vx, vt , vxx, θ, θx, θt , θxx, I, Ix) ∈ (Cα(QT ))
14
,

and

(ηtt , vxt , θxt) ∈
(
L2(QT )

)3
.

Then Theorem 1 will be obtained from Theorem 3 through a regularization process.
Let us recall that the investigation of 1D viscous flows for compressiblemedia goes back to the pioneerwork of Antontsev,

Kazhikhov and Monakhov [17] (see also [18–20] for more recent presentations). The strategy that we use to prove these
results consists in an adaptation to the radiative case of the ideas of Dafermos and Hsiao [21], Kawohl [22] and Jiang [23].

2. A priori estimates

We first suppose that the solution is classical in the following sense:η ∈ C
1(QT ), ρ > 0,

v, θ ∈ C1([0, T ], C0(Ω)) ∩ C0([0, T ], C2(Ω)),
I ∈ C1(QT , C0(R+ × S1)).

(25)

We first prove the following regularity result:

Theorem 4. Suppose that the initial–boundary value problem (11), (13) and (15) has a classical solution described by Theorem 3.
Then the solution (η, v, vx, θ, θx, I) is bounded in the Hölder space C1/3,1/6(QT ) such that

|||η|||1/3 + |||v|||1/3 + |||vx|||1/3 + |||θ |||1/3 + |||θx|||1/3 6 C,

and

|||I|||1/3 6 C,

where C depends on T , the physical data of the problem and the initial data. Moreover

0 < η 6 η 6 η, 0 < θ 6 θ 6 θ.
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Let T be an arbitrary positive number, and let us denote by C various positive constants which may possibly depend on
T and the physical constants of the problem.

Lemma 1. Under the following condition on the data:∥∥v0∥∥L2(Ω) + ∥∥η0∥∥L1(Ω) + ∥∥θ0∥∥L1(Ω) 6 N, (26)

there exists a constant K(N) such that:

1. the mass conservation∫
Ω

η dx =
∫
Ω

η0 dx, (27)

2. the energy equality∫
Ω

[
e+

1
2
v2
]
dx =

∫
Ω

[
e0 +

1
2
(v0)2

]
dx, (28)

3. the entropy inequality

1
4

∫
Ω

(θ + θ1+r) dx+
∫
QT

(
κ(η, θ)

ηθ2
θ2x +

µ

ηθ
v2x

)
dx ds 6 C, (29)

4. the estimate

‖η‖L∞(0,T ;L1(Ω)) + ‖v‖L∞(0,T ;L2(Ω)) + ‖θ‖L∞(0,T ;L1(Ω)) 6 C (30)

hold.

Proof. 1. Integrating the first Eq. (11) and using boundary conditions gives (27).
2. From the radiative transfer equation, integrating over frequencies and angular momentum,

(FR)x = η(SE)R.

Plugging in the third Eq. (11), we get(
e+

1
2
v2
)
t
= (σv − q− FR)x , (31)

which gives (28) after integrating overΩ and using boundary conditions.
3. Entropy s = sm + sR is the sum of the entropy of matter sm and entropy of radiation sR. As in our simplified model

sR = 0, from the second principle of thermodynamics, one has that θst = et + pηt , with sη = 1
θ

(
eη − p

)
and sθ =

eθ
θ
. From

the third Eq. (11), we get

et = σvx − qx − (FR)x . (32)

Using (11), one finds

(s)t +
(
κθx

ηθ

)
x
=
µv2x

ηθ
+
κθ2x

ηθ2
−
η

θ
(SE)R. (33)

We use the technique of [23] and define the free energy ψ := e − θs of the fluid, with ψθ = −s and ψη = −p. Let us
consider the auxiliary function

E(η, θ) := ψ(η, θ)− ψ(1, θ0)− (η − 1)ψη(1, θ0)− (θ − θ0)ψθ (η, θ).

A direct computation gives(
E +

1
2
v2
)
t
+ θ0

(
µv2x

ηθ
+
κθ2x

ηθ2

)
= (σv)x + p(1, θ0)vx +

[(
1−

θ0

θ

)
κθx

ηθ

]
x
−

(
1−

θ0

θ

)
η(SE)R. (34)

Using the last Eq. (11), the last factor in (34) can be rewritten as

−

(
1−

θ0

θ

)
η(SE)R = −η(SE)R + θ0

η

θ

∫
∞

0

∫
S1
σa(B− I) dω dν −

[∫
∞

0

∫
S1
ωI dω dν

]
x

+ θ0
η

θ

∫
∞

0

∫
S1
σaB dω dν − θ0

η

θ
η

∫
∞

0

∫
S1
σaI dω dν.
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The second term can be controlled by using (18):

η
θ0

θ

∫
∞

0

∫
S1
σaB0 dω dν 6 C(1+ θ r) 6 Ce(η, θ).

Plugging all of these estimates into (34), we get finally(
E +

1
2
v2
)
t
+ θ0

(
µv2x

ηθ
+
κθ2x

ηθ2

)
+
η

θ
θ0

∫
∞

0

∫
S1
σaI dω dν

6

[
σv + p(1, θ0)v +

(
1−

θ0

θ

)
κθx

ηθ

]
x
−

[∫
∞

0

∫
S1
ωI dω dν

]
x
+ Ce(η, θ).

Integrating over Qt and using (28) and (13), the contribution of the first boundary term is zero.
Using (14), the contribution of the radiative term reads∫

Ω

[∫
∞

0

∫
S1
ωI dω dν

]
x
dx =

∫
∞

0

∫ 1

0
ωI(M, t; ν, ω) dω dν −

∫
∞

0

∫ 0

−1
ωI(0, t; ν, ω) dω dν > 0,

and finally, we obtain∫
Ω

E dx+ θ0

∫
Qt

(
µv2x

ηθ
+
κθ2x

ηθ2

)
dx ds+ θ0

∫
Qt

η

θ

∫
∞

0

∫
S1
σaI dω dν dx ds

+

∫ t

0

∫
∞

0

∫ 1

0
ωI(M, t; ν, ω) dω dν ds−

∫ t

0

∫
∞

0

∫ 0

−1
ωI(0, t; ν, ω) dω dν ds 6 C . (35)

Now we argue in the same way as [23] noting that, by using Taylor’s formula, for any η > 0

E(η, θ)− ψ(η, θ)+ ψ(η, θ0)+ (θ − θ0)ψθ (η, θ) = ψ(η, θ0)− ψ(1, θ0)− (η − 1)ψη(1, θ0) > 0,

and

ψ(η, θ)− ψ(η, θ0)− (θ − θ0)ψθ (η, θ) = −(θ − θ0)
2
∫ 1

0
(1− α)ψθθ (η, θ + α(θ0 − θ)) dα.

Using ψθθ = θ−1eθ and estimates (18), we find

ψ(η, θ)− ψ(η, θ0)− (θ − θ0)ψθ (η, θ) >
1
4
C1
(
θ + θ1+r

)
− C .

So we deduce that

E(η, θ) >
1
4
C1
(
θ + θ1+r

)
− C,

and by plugging this into (35), we conclude that (29) holds.
3. The estimate (30) follows from (28). �

Using Lemma 1, we can quote verbatim all the results of [23] which only involve the first and second Eq. (11) and get
first bounds for density.

Lemma 2. Under the previous condition on the data (26), there exists positive constants η and η depending on T and N such that

η 6 η(x, t) 6 η for (t, x) ∈ QT . (36)

As we will need bounds for the radiative intensity, we give the simple result:

Lemma 3. 1. The solution of the integro-differential equation
ω
∂

∂x
I(x; ν, ω) = ησa(ν, ω, η, θ) [B(ν, θ)− I(x; ν, ω)]+ ησs(ν, η, θ)

[
Ĩ(x; ν)− I(x; ν, ω)

]
onΩ × R+ × S1,

I(0; ν, ω) = 0 for ω ∈ (0, 1),
I(M; ν, ω) = 0 for ω ∈ (−1, 0),

(37)
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is given by the (implicit) formula

I(x; ν, ω) =

∣∣∣∣∣∣∣∣
∫ x

0
e−

∫ y
x
η(σa+σs)

ω dz η

ω

(
σaB+ σs Ĩ

)
dy for ω ∈ (0, 1),

−

∫ M

x
e
∫ y
x
η(σa+σs)

ω dz η

ω

(
σaB+ σs Ĩ

)
dy for ω ∈ (−1, 0),

(38)

for any x ∈ Ω and any ν ∈ R+.
2. The following inequalities hold:

∫
Ω

∫
∞

0

∫
S1
(σa + σs)I2 dx dω 6 C

(
1+max

QT
θα+1

)
,∫

Ω

∫
∞

0

∫
S1
σs

(
Ĩ − I

)2
dx dω dν 6 C

(
1+max

QT
θα+1

)
.

(39)

3. The following bounds hold:∫
∞

0

∫
S1
I(x; ν, ω) dω dν 6 C

(
1+max

QT
θα+1

)
. (40)

Proof. 1. Identity (38) is straightforward after solving explicitly the ordinary differential equation and using boundary
conditions. �
2. Multiplying (37) by I , integrating overΩ × S1 and using boundary conditions, we get

1
2

∫
S1
ωI2(M; ν, ω) dω −

1
2

∫
S1
ωI2(0; ν, ω) dω +

∫
Ω

∫
S1
η(σa + σs)I2 dx dω

+

∫
Ω

∫
S1
ησs

(
Ĩ − I

)2
dx dω =

∫
Ω

∫
S1
ησaBI dx dω.

Integrating over frequency, using (18) and estimating the right-hand side by the Cauchy–Schwarz inequality, we have

1
2

∫
∞

0

∫
S1
ωI2(M; ν, ω) dω dν −

1
2

∫
∞

0

∫
S1
ωI2(0; ν, ω) dω dν

+

∫
∞

0

∫
Ω

∫
S1
η(σa + σs)I2 dx dω +

∫
∞

0

∫
Ω

∫
S1
ησs

(
Ĩ − I

)2
dx dω dν

6
1
2

∫
∞

0

∫
Ω

∫
S1
η(σa + σs)I2 dx dω +

1
2

∫
∞

0

∫
Ω

∫
S1
η

σ 2a

σa + σs
B2 dx dω,

and as, using (18), the last integral is bounded by

C8

∫
Ω

θα+1
∫
∞

0

∫
S1
g dx dω dν,

we get (39).
3. From (38) we see that∫

∞

0

∫
S1
I(x; ν, ω) dω dν 6 2

∫
Ω

∫
∞

0

∫ 1

0

η

ω
σaB dy dω dν + 2

∫
Ω

η

∫
∞

0
σs Ĩ

(∫ 1

0

e−
σs
ω

∫ x
y η(z) dz

ω
dω

)
dy dν.

After (18), the first integral in the right-hand side is bounded by C(1 + θα+1). In the second, we introduce the function
E1(s) :=

∫
∞

c
e−τ
τ
dτ , for s > 0 and we get∫

Ω

η

∫
∞

0
σs Ĩ

(∫ 1

0

e−
σs
ω

∫ x
y η(z) dz

ω
dω

)
dy dν =

∫
Ω

η

∫
∞

0
σsE1

(
σs

∣∣∣∣∫ x

y
η dz

∣∣∣∣) Ĩ(y, ν) dy dν.
As s→ E1(s) is decreasing, we observe that

E1

(
σs

∣∣∣∣∫ x

y
η dz

∣∣∣∣) 6 E1 (σs(ν)η |x− y|) .
Then using the Cauchy–Schwarz inequality,∫

Ω

η

∫
∞

0
σs Ĩ

(∫ 1

0

e−
σs
ω

∫ x
y η(z) dz

ω
dω

)
dy dν 6 C

∫
Ω

∫
∞

0
σs Ĩ2 dy dν + C

∫
Ω

∫
∞

0
σsE21

(
σs(ν)η |x− y|

)
dy dν.
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As one knows (see [24, p. 229]) that E1(z) < e−x log(1+ 1
x ), one checks

E21
((
σs(ν)η |x− y|

))
< log2

(
1+ σs(ν)η |x− y|

)
+ log2

(
σs(ν)η |x− y|

)
,

and then we obtain∫
Ω

∫
∞

0
σs(ν)E21

(
σs(ν)η |x− y|

)
dy dν 6

∫
Ω

∫
∞

0
σs

[
log2

(
1+ σs(ν)η |x− y|

)
+ log2

(
σs(ν)η |x− y|

)]
dy dν,

6

∫
Ω

∫
∞

0
σs
[
log2 (1+ au)+ log2 (au)

]
du dν,

where a = σs(ν)η. An elementary computation shows that this integral is bounded by C
∫
∞

0 σ
1+γ
s dν for any positive γ ,

which is bounded after (18) and finally we get∫
∞

0

∫
S1
I(x; ν, ω) dω dν 6 C(1+ θα+1). �

We have now the following estimates (see [23] for the proof).

Lemma 4. 1.∫
QT
v2x dx dt 6 C . (41)

2. For any ε ∈ (0, 1) if r ∈ [0, 1], and for ε = 0 if r ∈ (0, 1]∫
QT
θ−rv2x dx dt +

∫
QT
(1+ θ q)θ1−r−εθ2x dx dt 6 C . (42)

3. For any ε ∈ (0, 1) if r ∈ [0, 1], and for ε = 0 if r ∈ (0, 1]∫
QT
θ q+3+r−ε dx dt +

∫ T

0
max
Ω
θ q+2−ε dt 6 C . (43)

4.

max
[0,T ]

∫
Ω

η2x dx dt 6 C . (44)

5. ∫
QT
v4x dx dt 6 C

(
1+max

Ω
θ2(1+r+ε)

)
. (45)

Now we consider the two quantities

Y := max
[0,T ]

∫
Ω

(
1+ θ2q

)
θ2x dx, Z := max

[0,T ]

∫
Ω

v2xx dx.

It is routine to show (see [21]) that

max
QT

θ 6 C
(
1+ Y

1
2q+3+r

)
, (46)

max
QT

∫
Ω

v2x dx dt 6 C
(
1+ Z1/2

)
, (47)

and

max
QT
|vx| 6 C

(
1+ Z3/8

)
. (48)

Lemma 5. Under the previous condition on the data (26), there exists a positive constant K depending on T and N such that

Y 6 K
(
1+ Z

2q+1
2q+2 + Y

2q+2α−r+3
2q+r+3

)
, (49)

and

X :=
∫
QT
(1+ θ q+r)θ2t dx dt 6 K

(
1+ Z

2q+1
2q+2 + Y

2q+2α−r+3
2q+r+3

)
. (50)
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Proof. From (11), the equation for the internal energy reads

eθθt + θpθvx −
µ

η
v2x =

(
κθx

η

)
x
− η(SE)R.

Defining the auxiliary function K(η, θ) :=
∫ θ
0
κ(η,u)
u du, multiplying the previous equation by Kt and integrating by parts,

we get∫
QT

(
eθθt + θpθvx −

µ

η
v2x

)
Kt dx ds+

∫
QT

(
κθx

η

)
Ktx dx ds−

∫
QT
η(SE)RKt dx ds = 0. (51)

Observing that Kt = Kηvx + κ
η
θt , Kxt =

(
κθx
η

)
t
+ Kηηvxηx +

(
κ
η

)
η
ηxθt and that after (18) |Kη| + |Kηη| 6 C(1 + θ q+1), we

can estimate all the contributions in (51).
After Lemma 4, the first two integrals lead to the same estimates as in [23] (see Lemma 2.8), and we have∫

QT
eθθtKt dx ds >

c6c1
2η
X − CZ3/4,∣∣∣∣∫

QT

(
θpθvx −

µ

η
v2x

)
Kηvx dx ds

∣∣∣∣ 6 a1Y + C(1+ Z3/4),∣∣∣∣∫
QT

(
θpθvx −

µ

η
v2x

)
κ

η
θt dx ds

∣∣∣∣ 6 b1X + a2Y + CZ3/4 + C,∣∣∣∣∫
QT

(
κθx

η

)(
κθx

η

)
t
dx ds

∣∣∣∣ > c26
2η2

Y − C,∣∣∣∣∫
QT

(
κθx

η

)
Kηvxx dx ds

∣∣∣∣ 6 a3Y + CZ 2q+12q+2 + C,∣∣∣∣∫
QT

(
κθx

η

)
Kηηvxηx dx ds

∣∣∣∣ 6 a4Y + CZ 34 + C,∣∣∣∣∣
∫
QT

(
κθx

η

)(
κ

η

)
η

ηxθt dx ds

∣∣∣∣∣ 6 b2X + a5Y + CZ 34 + C,
where aj and bj are positive numbers.
Let us estimate the last term in (51).∣∣∣∣∫

QT
η(SE)RKt dx ds

∣∣∣∣ 6 ∫
QT

(∫
∞

0

∫
S1
ησa(B+ I) dν dω

)
|Kt | dx ds

+

∫
QT

(∫
∞

0

∫
S1
ησs|Ĩ − I| dν dω

)
|Kt | dx ds =: P + Q .

After (18) and Lemma 3,

P 6 C
∫
QT
|Kt |(1+ θα+1) dx ds

6 C
∫
QT

(
1+ θ q+α+2

)
|vx| dx ds+ C

∫
QT

(
1+ θ q+α+1

)
|θt | dx ds =: A+ B.

Using Lemma 4 and the Cauchy–Schwarz inequality we have

A 6 C + CY
2q+2α−r+3
2q+r+3 + CZ3/4,

and

B 6 b3X + CY
2q+2α−r+3
2q+r+3 .

Using (18), Lemmas 3, 4 and the Cauchy–Schwarz inequality we have in the same stroke

Q 6 C
∫
QT

∫
∞

0

∫
S1
ησs|Ĩ − I|2 dν dω dx ds+

∫
QT

∫
∞

0

∫
S1
ησsK 2t dν dω dx ds

6 C
(
1+max

QT
θα+1

)
+ C

∫
QT
K 2t dx ds,
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and the last integral is bounded by

6

∫
QT

(
1+ θ2(q+1)

)
v2x dx ds+ C

∫
QT

(
1+ θ2q

)
θ2t dx ds =: C + D.

Exactly as for P , we get

C 6 C + CY
2q−r+1
2q+r+3 + CZ3/4,

and

D 6 b3X + CY
2q−r+1
2q+r+3 ,

so finally∣∣∣∣∫
QT
η(SE)RKt dx ds

∣∣∣∣ 6 A+ B+ cY α+1
2q+r+3 + C + D

6 b3X + CY
2q+2α−r+3
2q+r+3 + CZ3/4,

where c is another positive constant.

Combining all the previous inequalities, choosing the numbers aj such that
∑5
j=1 aj 6

c26
4η2
and the bj such that

∑3
j=1 bj 6

c6c1
4η , and observing that

2q+1
2q+2 >

3
4 , we get

c6c1
4η
X +

c26
4η2

Y 6 C + CZ
2q+1
2q+2 + CY

2q+2α−r+3
2q+r+3 , (52)

which ends the proof. �

Exactly as in [23] (see Lemma 2.9) one can prove now:

Lemma 6.

max
[0,T ]

∫
Ω

v2t dx+
∫
QT
v2xt dx dt 6 C

(
1+ Z

2q+1
2q+2

)
. (53)

Proof. Differentiating the second Eq. (11) with respect to t , multiplying by vt , integrating by parts, using boundary condi-
tions together with Lemma 4, one gets (53) (see [23] for the details). �

Lemma 7. All the quantities

X, Y , max
QT

θ, (54)

are bounded.

Proof. From Lemma 5, it follows in particular that

Y

1+ Z
2q+1
2q+2

6 C + C

(
Y

1+ Z
2q+1
2q+2

) 2q+2α−r+3
2q+r+3 1(

1+ Z
2q+1
2q+2

) 2(r−α)
2q+r+3

,

and, as r > α, we conclude that

Y 6 C + CZ
2q+1
2q+2 . (55)

Rewriting now the momentum equation as

vxx =
η

µ

[
vt + px −

(
µ

η

)
η

ηxvx

]
,
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we get, using Lemma 4,

Z =
∫
Ω

v2xx dx

6 C
∫
Ω

v2t dx+ C
∫
Ω

(1+ θ2r+2)η2x dx+ C
∫
Ω

(1+ θ2r)θ2x dx+ C
∫
Ω

η2xv
2
x dx

6 C + CZ
2q+1
2q+2 +max

QT
θ2r+2 + CY + CZ3/4,

and taking (55), we find

Z 6 C + CZ
2q+1
2q+2 .

As 2q+12q+2 < 1, this implies that Z 6 C , and the bounds X, Y ,maxQT θ < C follow. �

Lemma 8. All the quantities

max
[0,T ]

∫
Ω

v2xx dx,maxQT
|vx|,max

[0,T ]

∫
Ω

v2x dx,
∫
QT
v4x dx,max

[0,T ]

∫
Ω

v2t dx,
∫
QT
v2xt dx dt,

are bounded.

Proof. The first quantity is bounded after Lemma 7, the second one is bounded after (48), the third is bounded after (45)
and the boundedness of the two last quantities follows after Lemma 6. �

Lemma 9. Under the previous condition on the data there exist positive constants θ and θ depending on T and N such that

0 < θ 6 θ(x, t) 6 θ for (t, x) ∈ QT . (56)

Proof. Applying the maximum principle to the parabolic equation of the internal energy

eθθt + θpθvx −
µ

η
v2x =

(
κθx

η

)
x
− η(SE)R,

and observing that the terms θpθvx and η(SE)R are bounded, we get (56). �

Lemma 10.∥∥∥∥∫ ∞
0

∫
S1
I dω dν

∥∥∥∥
L∞(QT )

6 K(N), (57)∥∥∥∥∫ ∞
0

∫
S1
|Ix| dω dν

∥∥∥∥
L∞(QT )

6 K(N). (58)

Proof. Estimate (57) follows after Lemmas 3 and 9.
After the last Eq. (11),∫

∞

0

∫
S1
|Ix| dω dν 6

∫
∞

0

∫
S1

[
ησa

ω
B+

η(σa + σs)

ω
I +

ησs

ω
Ĩ
]
dω dν.

It is now routine, revisiting part 3 of the proof of Lemma 3, that (58) follows after (57) and (18). �

Lemma 11. All the quantities∫
QT
θ2t dx dt,max

[0,T ]

∫
Ω

θ2x dx,max
[0,T ]

∫
Ω

θ2t dx,max
[0,T ]

∫
Ω

θ2xx dx,
∫
QT
θ2xt dx dt, (59)

are bounded.

Proof. 1. The first two quantities are bounded after Lemma 7.
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2. In order to estimate the two remaining terms, by differentiating formally the internal energy equation with respect
to t , multiplying by eθθt and using integration by parts on QT , we get

1
2

∫
Ω

(eθθt)2 (x, t) dx−
1
2

∫
Ω

(eθθt)2 (x, 0) dx+
∫
QT
pθvxeθθ2t dx dt

+

∫
QT
θpθθvxeθθ2t dx dt +

∫
QT
θpθηv2x eθθt dx dt +

∫
QT
θpθvxteθθt dx dt −

∫
QT

[(
µ

η

)
η

v3x + 2
µ

η
vxvxt

]
eθθt dx dt

= −

∫
QT

κ

η
eθθ2tx dx dt −

∫
QT

[(
κ

η

)
η

vxθx +
κθ

η
θtθx

]
(eθθt)x dx dt

−

∫
QT
θx
(
eθηηx + eθθθx

)
dx dt −

∫
QT
η [(SE)R]t eθθt dx dt −

∫
QT
vx(SE)R eθθt dx dt.

After [21] (see the proof of Lemma 3.6), we get

1
2

∫
Ω

(eθθt)2 (x, t) dx+
∫
QT

κ

η
eθθ2tx dx dt 6 C −

∫
QT

[(SE)R]t eθθt dx dt −
∫
QT
vx(SE)R eθθt dx dt. (60)

The first integral in the right-hand side can be decomposed as follows:∫
QT

[(SE)R]t eθθt dx dt =
∫
QT
eθθtvx

∫
∞

0

∫
S1
σaB dν dω dx dt +

∫
QT
eθθtη

∫
∞

0

∫
S1
(σa)η B dν dω dx dt

+

∫
QT
eθθ2t

∫
∞

0

∫
S1
(σa)θ B dν dω dx dt +

∫
QT
eθθ2t

∫
∞

0

∫
S1
σa Bθ dν dω dx dt

−

∫
QT
eθθtvx

∫
∞

0

∫
S1
σaI dν dω dx dt +

∫
QT
eθθtη

∫
∞

0

∫
S1
(σa)η I dν dω dx dt

+

∫
QT
eθθ2t

∫
∞

0

∫
S1
(σa)θ I dν dω dx dt +

∫
QT
eθθt

∫
∞

0

∫
S1
σaIt dν dω dx dt

=:

8∑
j=1

Aj.

Using (18), the Cauchy–Schwarz inequality, Lemmas 8, 9 and the first part of the present lemma, one gets∣∣∣∣∣ 4∑
j=1

Aj

∣∣∣∣∣ 6 C + C
∫
QT
θ2t dx dt 6 C .

After the formula (38) and the bounds (18), one has

max
QT

∫
∞

0

∫
S1
I dω dν 6 C8max

QT
θα‖f ‖L1(R+×S1) 6 C .

In the same stroke, after computing the time derivative, we have also

max
QT

∫
∞

0

∫
S1
|It | dω dν 6 C,

which gives finally that |
∑8
j=5 Aj| 6 C , and then∣∣∣∣∫

QT
η [(SE)R]t eθθt dx dt

∣∣∣∣ 6 C .
It is readily checked that the same kind of estimate holds for the second integral in (60) (we omit the details):∣∣∣∣∫

QT
vx(SE)R eθθt dx dt

∣∣∣∣ 6 C .
Plugging this estimate into (60), we obtain the first two estimates (59).
3. From the internal energy equation

κ

η
θxx =

(
κ − ηκη

η2

)
ηxθx −

κθ

η
θ2x + eθθt + θpθvx −

µ

η
v2x + η(SE)R,
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then

|θxx| 6 C
(
|ηxθx| + θ

2
x + |θt | + |vx| + v

2
x + |(SE)R|

)
,

and one checks that all of the terms in the right-hand side are in L2(Ω), which proves the last bound (59). �

Proof of Theorem 4. 1. As maxQT |vx| is bounded we have

∣∣η(x, t)− η(x, t ′)∣∣ 6 |t − t ′|1/2 (∫ T

0
v2x dt

)1/2
6 C |t − t ′|1/2.

After Lemma 4 we have also∣∣η(x, t)− η(x′, t)∣∣ 6 C |x− x′|1/2 (1+ ∫
Ω

η2x dx
)
6 C |x− x′|1/2,

so we find that η ∈ C1/2,1/4(QT ).
2. After Lemma 11 we have

∣∣θ(x, t)− θ(x, t ′)∣∣ 6 |t − t ′|1/2 (∫ T

0
θ2t dt

)1/2
6 C |t − t ′|1/2

(∫ T

0

∫
Ω

2|θtθxt | dx dt
)1/2

6 C |t − t ′|1/2.

We see also that∣∣θ(x, t)− θ(x′, t)∣∣ 6 C |x− x′|1/2 (T ·max
[0,T ]

∫
Ω

θ2t dx+
∫ T

0

∫
Ω

θ2xt dx
)

6 C |x− x′|1/2,

so we find that θ ∈ C1/2,1/4(QT ). We have also∣∣θx(x, t)− θx(x′, t)∣∣ 6 |x− x′|1/2 (∫
Ω

θ2xx dt
)1/2

6 |x− x′|1/2,

and we conclude, by using an interpolation argument of [25], that θx ∈ C1/3,1/6(QT ).
3. The same arguments holding verbatim for v and vx, we have that v, vx ∈ C1/3,1/6(QT ).
4. Let us note I(x, t) :=

∫
∞

0

∫
S1 I(x, t;ω, ν) dω dν.

From the explicit formula giving I and using (18), we have

|I(x, t)− I(x′, t)| 6
∫ x

x′
|Iy| dy 6

∫ x

x′

[
ησa

|ω|
|B− I| +

ησs

ω
(Ĩ − I)

]
dy

6 C |x− x′|1/2.

One also checks after an elementary computation from the explicit formula giving I , that max[0,T ] ‖It‖L2(Ω) 6 C . It follows
that

|I(x, t)− I(x, t ′)| 6 C |t − t ′|1/2,

and then I ∈ C1/3,1/6(QT ).
From the last Eq. (11), we get also the formula

Ix(x, t) =
∫
∞

0

∫
S1

[
ησa

ω
(B− I)+

ησs

|ω|
|Ĩ − I|

]
dω dν.

From the Hölder properties of the right-hand side, we get finally

|Ix(x, t)− Ix(x′, t)| 6 C |x− x′|1/2,

and

|Ix(x, t)− Ix(x, t ′)| 6 C |t − t ′|1/2,

and then Ix ∈ C1/3,1/6(QT ), which ends the proof of Theorem 4. �
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3. Existence and uniqueness of solutions

In this sectionwe prove the existence of a classical solution bymeans of the classical Leray–Schauder fixed point theorem
in the same spirit as in [22,21]; then using a limiting process as in [26] we will get the existence of weak solutions.
Let us recall the Leray–Schauder fixed point theorem:

Theorem 5. Let B be a Banach space and suppose that P : [0, 1] ×B → B has the following properties:

(i) For any fixed λ ∈ [0, 1] the map P(λ, .) : B → B is completely continuous.
(ii) For every bounded subset S ⊂ B the family of maps P(., χ) : [0, 1] → B, χ ∈ S is uniformly equicontinuous.
(iii) There is a bounded subset S of B such that any fixed point inB of P(λ, .), λ ∈ [0, 1] is contained in S.
(iv) P(0, .) has precisely one fixed point inB .

Then, P(1, .) has at least one fixed point inB .

In our caseB will be a Banach space of functions η, v, θ ∈ B on QT with η, v, vx, θ, θx ∈ C1/3,1/6(QT )with the norm

|‖(η, v, θ)‖|B := |||η|||1/3 + |||v|||1/3 + |||vx|||1/3 + |||θ |||1/3 + |||θx|||1/3.

For λ ∈ [0, 1]we define P(λ, .) as the map which carries {η̃, ṽ, θ̃} ∈ B into {η, v, θ} ∈ B by solving the system

ηt = vx,

vt −
µ

η̃
vxx = −

µ

η̃2
η̃xṽx − p̃η(η̃, θ̃ )ηx − p̃θ (η̃, θ̃ )θx,

ẽθ (ũ, θ̃ )θt −
κ̃(η̃, θ̃ )

η̃
θxx =

(
κ̃(η̃, θ̃ )

η̃

)
η

θ̃xηx +
κ̃θ (η̃, θ̃ )

η̃
θ̃2x +

µ

η̃
ṽ2x − θ̃ p̃θ (η̃, θ̃ )ṽx − η̃

(
S̃E
)
R
,

(61)

together with the boundary conditions{
v|x=0,M = 0,
θx|x=0 = 0, θ |x=M = 0,

(62)

for t > 0, and initial conditions{
η(x, 0) = (1− λ)+ λη0(x),
v(x, 0) = λv0(x),
θ(x, 0) = (1− λ)+ λθ0(x).

(63)

We can consider the second and the third equations of (64) as parabolic type and apply the classical Schauder–Friedmann
estimates

‖v‖1/3 + ‖vx‖1/3 6 c{‖η‖1/3 + ‖ṽ‖1/3 + ‖θ̃x‖1/3}

‖θx‖1/3 + ‖θ‖1/3 6 c{‖θ̃x‖1/3 + ‖ṽx‖1/3}.

Moreover from the first Eq. (61), we get

‖η‖1/3 6 ‖vx‖1/3.

This implies that P(λ, .) : B → B is well defined and continuous.
Using a priori estimates from Section 2 it follows that for any {η̃, ṽ, θ̃} from any fixed bounded subset the family

P(., {η̃, ṽ, θ̃}) : [0, 1] → B of mappings is uniformly equicontinuous.
Now, in order to verify (iii), we observe that any fixed point of P will initially satisfy the original problem; therefore η and

θ cannot escape from [η, η], [θ, θ ] up to time T . This fact follows clearly from Theorem 4. To check (iv) we see by inspection
that the unique fixed point of P(0, .) is given by η(x, t) = 1, v(x, t) = 0, θ(x, t) = 1.
All the previous facts allow us to apply Theorem 5, which implies the existence of classical solutions of (11)–(15) in

Ω × (0, t∗).
This ends the proof of Theorem 3.
Let us now consider the existence of a weak solution. From previous results it follows that:

• vk → v in Lp(0, t∗; C0(Ω)) strongly and in Lp(0, t∗;H1(Ω))weakly for 1 < p <∞,
• vk → v a.e. inΩ × [0, t∗] and in L∞(0, t∗; L4(Ω))weakly ∗,
• (vk)t → vt in L2(0, t∗, L2(Ω))weakly,
• θk → θ in L2(0, t∗, C0(Ω)) strongly and in L2(0, t∗,H1(Ω))weakly,
• θk → θ a.e. inΩ × [0, t∗] and in L∞(0, t∗; L2(Ω))weakly,
• σk → A1 in L2(0, t∗;H1(Ω))weakly.
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This implies that

ηk → η a.e. inΩ × [0, t∗] and Ls(Ω × [0, t∗]) strongly for all s ∈ [1,∞[.

All this implies that

•
κk(θk)x
ηk
→ A2 weakly in L2(0, t∗,H1(Ω)),

•
µ

ηk
(vk)x → A3 in L∞(0, t∗, L2(Ω))weakly ∗,

• ηk{(SE)R}k → A4 in L2(0, t∗;H1(Ω))weakly.

Then applying a technique similar to that of [26] it follows that

• A1 = σ in L2(0, t∗,H1(Ω)),
• A2 = κθx

η
in L2(0, t∗, L2(Ω)),

• A3 =
µ

η
vx in L2(0, t∗,H1(Ω)),

• A4 = η(SE)R in L2(0, t∗,H1(Ω)), which ends the proof of the existence of a weak solution.

Finally we prove uniqueness of the solution.
Let ηi, vi, θi, i = 1, 2, be two solutions of (5), and let us consider the differences E = η1−η2, T = θ1−θ2 and V = v1−v2.
From the first Eq. (11) written for η1, w1 and η2, w2, subtracting, multiplying by a test function χ , integrating by parts

and putting χ = E we obtain

1
2
d
dt

∫
Ω

E2 dx =
∫
Ω

EVx dx 6 ‖E‖2‖Vx‖2.

Using the Cauchy–Schwarz inequality for ε > 0,

d
dt

∫
Ω

E2 dx 6 ε‖Vx‖22 + Cε‖E‖
2
2. (64)

Rewriting the second Eq. (11) for v2 and v1, subtracting, multiplying by a test function φ, integrating by parts and putting
φ = V we obtain the following:

1
2
d
dt

∫
Ω

V 2 dx+
∫
Ω

µ
µ2

η2
V 2x dx = −

2∑
i=1

Ai,

with

|A1| =

∣∣∣∣∫
Ω

(p2 − p1) Vx dx
∣∣∣∣

6 C‖Vx‖2 (‖T‖2 + ‖E‖2) 6 ε‖Vx‖22 + Cε
(
‖T‖22 + ‖E‖

2
2

)
,

where we used the Cauchy–Schwarz inequality for ε > 0.
In the same stroke,

|A2| =

∣∣∣∣∫
Ω

η2 − η1

η2η1
µ(v2)xVx dx

∣∣∣∣ 6 C‖E‖2‖Vx‖2 6 ε‖Vx‖22 + Cε‖E‖22.
So we get finally, taking ε small enough,

d
dt

∫
Ω

V 2 dx+
∫
Ω

V 2x dx 6 C
(
‖T‖22 + ‖E‖

2
2

)
. (65)

Now, dividing the energy equation by eθ , we have

θt = −
θpθ
eθ

wx +
qx
eθ
+

µ

ηeθ
v2x −

η

eθ
(SE)R.

Subtracting this equation written for η1, v1, θ1 from the same for η2, v2, θ2, multiplying by a test functionψ , integrating
by parts and putting ψ = T we obtain

1
2
d
dt

∫
Ω

T 2 dx = −
∫
Ω

[
θ1pθ (η1, θ1)
eθ (η1, θ1)

w1x −
θ2pθ (η2, θ2)
eθ (η2, θ2)

w2x

]
T dx+

∫
Ω

[
κ(η1, θ1)

η1eθ (η1, θ1)
−

κ(η2, θ2)

η2eθ (η2, θ2)

]
T dx

+

∫
Ω

[
µv1

2
x

η1eθ (η1, θ1)
−

µv2
2
x

η2eθ (η2, θ2)

]
T dx

∫
Ω

{η1[(SE)R]1 − η2[(SE)R]2} T dx := −
4∑
i=1

Bi.
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Bounding theBi, using as previously the Cauchy–Schwarz inequality for ε > 0, we get

|B1| 6 ε
(
‖Vx‖22 + ‖Tx‖

2
2

)
+ Cε

(
‖E‖22 + ‖T‖

2
2

)
,

|B2| 6 −

∫
Ω

κ(η2, θ2)r42
η2eθ (η2, θ2)

T 2x dx+ ε
∫
Ω

T 2x dx+ Cε
(
‖E‖22 + ‖T‖

2
2

)
,

|B3| 6 ε‖Vx‖22 + Cε‖E‖
2
2,

and

|B4| 6 C‖E‖22 + C‖T‖
2
2.

We obtain finally

d
dt

∫
Ω

T 2 dx+
∫
Ω

T 2x dx 6 ε
∫
Ω

V 2x dx+ C
(
‖E‖22 + ‖T‖

2
2

)
. (66)

Then adding inequalities (64)–(66) and choosing ε small enough, we get

1
2
d
dt

∫
Ω

(
E2 + V 2 + T 2

)
dx 6 C

(
‖E‖22 + ‖V‖

2
2 + ‖T‖

2
2

)
,

which clearly implies uniqueness.
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LAPLACE EQUATION IN THE HALF-SPACE WITH
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Abstract. We deal with the Laplace equation in the half space. The use of a special
family of weigted Sobolev spaces as a framework is at the heart of our approach. A complete
class of existence, uniqueness and regularity results is obtained for inhomogeneous Dirichlet
problem.

Keywords: the Laplace equation, weighted Sobolev spaces, the half space, existence,
uniqueness, regularity

MSC 2000 : 35J05, 58J10

1. Introduction

The purpose of this paper is to solve the problem

(P)

{−∆u = f in �
N
+ ,

u = g on Γ = �
N−1 ,

with the Dirichlet boundary condition on Γ. The approach is based on the use of
a special class of weighted Sobolev spaces for describing the behavior at infinity.
Many authors have studied the Laplace equation in the whole space �N or in an
exterior domain. The main difference is due to the nature of the boundary and one
of difficulties is to obtain the appropriate spaces of traces. However, the half-space
has a useful symmetric property.

Second author would like to thank the Grant Agency of the Czech Republic No. 201/99/
0267 and both authors to the Barrande project between the Czech Republic and France.
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Problem (P) has been investigated in weighted Sobolev spaces by several authors,
but only in the Hilbert cases (p = 2) and without the critical cases corresponding to
the logarithmic factor (cf. [2], [4]). We can also mention the book by Simader, Sohr
[5] where the Dirichlet problem for the Laplacian is investigated.
Let Ω be an open subset of �N , N � 2. Let x = (x1, . . . , xN ) be a typical point

of �N and r = |x| = (x21 + . . .+ x2N )
1/2. We use two basic weights:

� = (1 + r2)1/2 and lg � = ln(2 + r2).

As usual, D(�N ) denotes the spaces of indefinitely differentiable functions with a
compact support and D′

(�N ) denotes its dual space, called the space of distributions.
For any nonnegative integers n and m, real numbers p > 1, α and β, setting

k = k(m, N, p, α) =

{−1 if N
p + α /∈ {1, . . . , m},

m − N
p − α if N

p + α ∈ {1, . . . , m},

we define the following space:

(1.1)
Wm,p

α,β (Ω) = {u ∈ D′(Ω); 0 � |λ| � k, �α−m+|λ|(lg �)β−1Dλu ∈ Lp(Ω);

k + 1 � |λ| � m, �α−m+|λ|(lg �)βDλu ∈ Lp(Ω)}.

In case β = 0, we simply denote the space by Wm,p
α (Ω). Note that Wm,p

α,β (Ω) is a
reflexive Banach space equipped with its natural norm

‖u‖W m,p
α,β (Ω)

=
[ ∑
0�|λ|�k

‖�α−m+|λ|(lg �)β−1Dλu‖p
Lp(Ω)

+
∑

k+1�|λ|�m

‖�α−m+|λ|(lg �)βDλu‖p
Lp(Ω)

]1/p

.

We also define the semi-norm

|u|W m,p
α,β (Ω)

=
( ∑

|λ|=m

‖�α(lg �)βDλu‖p
Lp(Ω)

)1/p

,

and for any integer q, we denote by Pq the space of polynomials in N variables of
a degree smaller than or equal to q, with the convention that Pq is reduced to {0}
when q is negative. The weights defined in (1.1) are chosen so that the corresponding
space satisfies two properties:

(1.2) D(�N
+ ) is dense in Wm,p

α,β (�
N
+ ),

and the following Poincaré-type inequality holds in Wm,p
α,β (�

N
+ ).
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Theorem 1.1. Let α and β be two real numbers and m � 1 an integer not
satisfying simultaneously

(1.3)
N

p
+ α ∈ {1, . . . , m} and (β − 1)p = −1.

Then the semi-norm | · |W m,p
α,β (�

N
+)
defines on Wm,p

α,β (�
N
+ )/Pq′ a norm which is equiv-

alent to the quotient norm,

(1.4) ∀u ∈ Wm,p
α,β (�

N
+ ), ‖u‖W m,p

α,β (�
N
+)/Pq′ � c|u|W m,p

α,β (�
N
+)

with q′ = inf(q, m − 1), where q is the highest degree of the polynomials contained
in Wm,p

α (�N
+ ),

�����. First, we construct a linear continuous extension operator such that

(1.5) P : Wm,p
α,β (�

N
+ )→ Wm,p

α,β (�
N )

satisfying

(1.6) ‖Pu‖W m,p
α,β (�

N) � ‖u‖W m,p
α,β (�

N
+)

.

Since

(1.6) ∀u ∈ Wm,p
α,β (�

N ), ‖u‖W m,p
α,β (�

N)/Pq′ � c|u|W m,p
α,β (�

N)

holds [cf. 1], it automatically implies the statement of our theorem. �

Now, we define the space

◦
Wm,p

α,β (�
N
+ ) = D(�N

+ )
‖·‖

W
m,p
α,β

(�N
+
) ;

the dual space of
◦

Wm,p
α,β (�

N
+ ) is denoted by W−m,p′

−α,−β(�
N
+ ), where p′ is the conjugate

of p : 1p +
1
p′ = 1.

Theorem 1.2. Under the assumptions of Theorem 1.1, the semi-norm

| · |W m,p
α,β (�

N
+)
is a norm on

◦
Wm,p

α,β (�
N
+ ) such that it is equivalent to the full norm

‖ · ‖W m,p
α,β
(�N
+)
.

We recall now some properties of weighted Sobolev spaces Wm,p
α,β (�

N
+ ). We have

the algebraic and topological imbeddings

Wm,p
α,β (�

N
+ ) ⊂ Wm−1,p

α−1,β (�
N
+ ) ⊂ . . . ⊂ W 0,p

α−m,β(�
N
+ )
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if N
p + α /∈ {1, . . . , m}. When N

p + α = j ∈ {1, . . . , m}, then we have:

Wm,p
α,β (�

N
+ ) ⊂ . . . ⊂ Wm−j+1,p

α−j+1,β (�
N
+ ) ⊂ Wm−j,p

α−j,β−1(�
N
+ ) ⊂ . . . ⊂ W 0,p

α−m,β−1(�
N
+ ).

Note that in the first case, the mapping u → �γu is an isomorphism from Wm,p
α,β (�

N
+ )

ontoWm,p
α−γ,β(�

N
+ ) for any integerm. Moreover, in both cases and for any multi-index

λ ∈ �
N , the mapping

u ∈ Wm,p
α,β (�

N
+ )→ Dλu ∈ W

m−|λ|,p
α,β (�N

+ )

is continuous.
Finally, it can be readily checked that the highest degree q of the polynomials

contained in Wm,p
α,β (�

N
+ ) is given by

q =




m − (Np + α)− 1 if
{

N
p + α ∈ {1, . . . , m} and (β − 1)p � −1
N
p + α ∈ {j ∈ Z; j � 0} and βp � −1

[m − (Np + α)] otherwise,

where [s] denotes the integer part of s.
In the sequel, for any integer q � 0, we will use the following polynomial spaces:
— Pq (P∆q ) is the space of polynomials (respectively, harmonic polynomials) of

degree � q,
— P ′

q is the subspace of polynomials in Pq depending only on the N − 1 first
variables, x′ = (x1, . . . , xN−1),
— A∆q (N

∆
q ) is the subspace of polynomials P

∆
q satisfying the condition p(x′, 0) = 0

(respectively, ∂p
∂xN
(x′, 0) = 0) or equivalently odd with respect to xN (even with

respect to xN ), with the convention that Pq, P
∆
q , P ′

q, . . . are reduced to {0} when q

is negative.

2. The spaces of traces

In order to define the traces of functions of Wm,p
α,β (�

N
+ ), we introduce for any

σ ∈]0, 1[ the space

W σ,p
0 (�

N ) =
{
u ∈ D′(�N ); w−σu ∈ Lp(�N ),(2.1) ∫ +∞

0
t−1−σp dt

∫
�N

|u(x+ tei)− u(x)|p dx < ∞
}
,

where

w =

{
� if N

p �= σ,

�(lg �)1/σ if N
p = σ,
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and e1, . . . , eN is a canonical basis of �N . It is a reflexive Banach space equipped
with its natural norm

‖u‖W σ,p
0 (�N) =

(∥∥∥ u

wσ

∥∥∥p

Lp(�N)
+

N∑
i=1

∫ ∞

0
t−1−σp dt

∫
�N

|u(x+ tei)− u(x)|p dx
)1/p

which is equivalent to the norm

(∥∥∥ u

wσ

∥∥∥p

Lp(�N)
+

∫
�N×�N

|u(x)− u(y)|p
|x − y|N+σp

dxdy
)1/p

.

For any s ∈ �
+ , we set

(2.2) W s,p
0 (�

N ) =
{

u ∈ W
[s],p
[s]−s(�

N ); ∀|λ| = [s], Dλu ∈ W
s−[s],p
0 (�N )

}
.

It is a reflexive Banach space equipped with the norm

‖u‖W s,p
0 (�N) = ‖u‖

W
[s],p
[s]−s

(�N)
+

∑
|λ|=s

‖Dλu‖
W

s−[s],p
0 (�N)

.

We notice that this definition and the next one coincide with the definition in the
first section when s = m is a nonnegative integer. For any s ∈ �

+ and α ∈ �, we
then set

(2.3) W s,p
α (�

N ) =
{
u ∈ W

[s],p
[s]+α−s(�

N ), ∀|λ| = [s], �αDλu ∈ W
s−[s],p
0 (�N )

}
.

Finally, for any integer m � 1, we define the space

(2.4)
Xm,p
0 (�N

+ ) =
{
u ∈ D′(�N

+ ); 0 � |λ| � k, �′|λ|−m(lg �′)−1Dλu ∈ Lp(�N
+ ),

k + 1 � |λ| � m, �′|λ|−mDλu ∈ Lp(�N
+ )

}

with �′ = (1 + |x′|2)1/2 and lg �′ = ln(2 + |x′|2). It is a reflexive Banach space. We
can prove that

D(�N
+ ) is dense in Xm,p

0 (�N
+ ).

We observe that the functions from Xm,p
0 (�N

+ ) and Wm,p
0 (�N

+ ) have the same traces
on Γ = �

N−1 (see below). If u is a function, we denote its traces on Γ = �
N−1 by

x′ ∈ �
N−1 , γ0u(x′) = u(x′, 0), . . . , γju(x′) = ∂ju

∂xj
N

(x′, 0).

As in [3], we can prove the following trace lemma:
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Lemma 2.1. For any integer m � 1 and real number α, the mapping

γ : D(�N
+ )→

m−1∏
j=0

D(�N−1 )

u �→ (γ0u, . . . , γm−1u)

can be extended by continuity to a linear and continuous mapping still denoted by

γ from Wm,p
α (�N

+ ) to
m−1∏
j=0

W
m−j− 1

p ,p
α (�N−1 ). Moreover, γ is onto and

Ker γ =
◦

Wm,p
α (�N

+ ).

3. The Laplace equation

The aim of this section is to study the problem (P):

(P)

{−∆u = f in �
N
+ ,

u = g in Γ = �
N−1 .

Theorem 3.1. Let � � 0 be an integer and assume that

(3.1)
N

p′
/∈ {1, . . . , �}

with the convention that this set is empty if � = 0. For any f in W−1,p
� (�N

+ ) and g

in W
1
p′ ,p

� (Γ) satisfying the compatibility condition

(3.2) ∀ϕ ∈ A∆[�+1− N
p′ ], 〈f, ϕ〉

W−1,p
� ×W 1,p′

−�

=
〈
g,

∂ϕ

∂γN

〉
Γ

where 〈·, ·〉Γ denotes the duality betweenW
1
p′ ,p

� (Γ) andW
− 1

p′ ,p′

−� (Γ), problem (P) has
a unique solution u ∈ W 1,p

� (�
N
+ ) and there exists a constant C independent of u, f

and g such that

(3.3) ‖u‖W 1,p
� (�N

+)
� C(‖f‖W−1,p

� (�N
+)
+ ‖g‖

W

1
p′ ,p

� (Γ)
).

�����. First, the kernel of the operator

(−∆, γ0) : W 1,p
� (�

N
+ )→ W−1,p

� (�N
+ )× W

1
p′ ,p

� (Γ)
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is precisely the space A∆[�+1−N/p′] for any integer � and A∆
[�+1− N

p′ ]
is reduced to {0}

when � � 0. Thanks to Lemma 2.1, let ug ∈ W 1,p
� (�

N
+ ) be the lifting function of g

such that
ug = g on Γ and ‖ug‖W 1,p

� (�N
+)

� C1‖g‖
W

1
p′ ,p

� (Γ)
.

Then problem (P) is equivalent to

(3.4)

{−∆v = f +∆ug in �
N
+ ,

v = 0 on Γ.

Set h = f +∆ug. For any ϕ ∈ W 1,p′
−� (�

N ) set

�ϕ(x′, xN ) = ϕ(x′, xN )− ϕ(x′,−xN ) if xN > 0.

It is clear that �ϕ ∈
◦

W 1,p′
−� (�

N
+ ). Then h can be extended to hπ ∈ W−1,p

� (�N )
defined by

ϕ ∈ W 1,p′
−� (�

N ), hπ(ϕ) = 〈h,�ϕ〉
W−1,p

� (�N
+)×W 1,p′

−� (�
N
+)

.

Moreover,
‖hπ‖W−1,p

� (�N) = ‖h‖W−1,p
� (�N

+)
.

Let q be a polynomial in P∆[�+1−N/p′]. We can write it in the form

q = r + s, r ∈ A∆[�+1−N/p′] and s ∈ N∆[�+1−N/p].

Then,
〈hπ, q〉 = 〈f +∆ug, r〉W−1,p

� (�N
+)×W 1,p′

−� (�
N
+)

and applying the Green formula we get

〈∆ug, r〉 = −
∫
�N
+

∇ug · ∇r dx

= −
〈
g,

∂r

∂xN

〉
W

1
p′ ,p

� (Γ)×W
− 1

p′ ,p′
−� (Γ)

(note that ∆r = 0 in �N
+ and r = 0 on Γ). Thus, hπ ∈ W−1,p

� (�N ) and it satisfies

∀q ∈ P∆[�+1−N/p′], 〈hπ, q〉 = 0.

Recall that (cf. [1]) since (3.1) holds, the operators

∆: W 1,p
� (�

N )→ W−1,p
� ⊥ P∆[�+1− N

p′ ]
if � � 1,

∆: W 1,p
0 (�

N )/P[1−N
p ]

→ W−1,p
0 (�N ) ⊥ P[1− N

p′ ] if � = 0
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are isomorphisms. Hence, there exists ṽ in W 1,p
� (�

N ) such that −∆ṽ = hπ. Now we
remark that the function w = 1

2 � ṽ belongs to W 1,p
� (�

N
+ ) and

−∆w = h in �
N
+ and w = 0 on Γ,

i.e.w is a solution of (3.4). �

������. The kernel A∆[−�+1−N/p] is reduced to {0} if � � 0 and to P[1−N/p] if
� = 0.

With similar arguments, we can prove the following theorem:

Theorem 3.2. Let � � 1 be an integer and assume that

(3.5)
N

p
/∈ {1, . . . ,−�}.

Then for any f in W−1,p
−� (�

N
+ ) and g in W

1
p′ ,p

−� (Γ), problem (P) has a unique solution
u ∈ W 1,p

−� (�
N
+ )/A

∆
[�+1−N/p] and there exists a constant C independent of u, f and g

such that

inf
q∈A∆

[�+1− N
p
]

‖u+ q‖W 1,p
−� (�

N
+)

� C(‖f‖W−1,p
−� (�N

+)
+ ‖g‖

W

1
p′ ,p

−� (Γ)
).

Theorem 3.3. Let m be a nonnegative integer, let g belong to W
1
p′+m,p

m (Γ) and
assume that

(3.6) f ∈ W−1+m,p
m (�N

+ ) if
N

p′
�= 1 or m = 0,

or

(3.7) f ∈ W−1+m,p
m (�N

+ ) ∩ W−1,p
0 (�N

+ ) if
N

p′
= 1 and m �= 0.

Then problem (P) has a unique solution u ∈ W 1+m,p
m (�N

+ ) and u satisfies

‖u‖W m+1,p
m (�N

+)
� C(‖f‖W−1+m,p

m (�N
+)
+ ‖g‖

W

1
p′ +m,p

m (Γ)
) if

N

p′
�= 1 or m = 0

and

‖u‖W m+1,p
m (�N

+)
� C(‖f‖W 1,p

0 (�N
+)
+ ‖f‖W−1+m,p

m (�N
+)
+ ‖g‖

W

1
p′ +m,p

m (Γ)
)

if
N

p′
= 1 and m �= 0.
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�����. First, we observe that for any integer m � 0 we have the inclusion

W−1+m,p
m (�N

+ ) ⊂ W−1,p
0 (�N

+ )

if N
p′ �= 1 or m = 0. Thus, under the assumptions (3.6) or (3.7) and thanks to

Theorem 3.1, there exists a unique solution u ∈ W 1,p
0 (�

N
+ ) of problem (P). Let us

prove by induction that

(3.8) g ∈ W
1
p′+m,p

m (Γ) and f satisfies (3.6) or (3.7) =⇒ u ∈ Wm+1,p
m (�N

+ ).

For m = 0, (3.8) is valid. Assume that (3.8) is valid for 0, 1, . . . , m and suppose that

g ∈ W
1
p′+m+1,p

m+1 (Γ) and f ∈ Wm,p
m+1(�

N
+ ) with

N
p′ �= 1 (a similar argument can be used

for f satisfying (3.7)). Let us prove that u ∈ Wm+2,p
m+1 (�

N
+ ). We observe first that

Wm,p
m+1(�

N
+ ) ⊂ Wm−1,p

m (�N
+ ) and W

1
p′+m+1,p

m+1 (Γ) ⊂ W
1
p′+m,p

m (Γ),

hence u belongs to Wm+1,p
m (�N

+ ) thanks to the induction hypothesis. Now, for i =
1, . . . , N − 1,

∆(�∂iu) = �∂if +
2
�
r · ∇(∂iu) +

(2
�
+
1
�3

)
∂iu.

Thus, ∆(�∂iu) ∈ Wm−1,p
m (�N

+ ) and γ0(�∂iu) ∈ Wm+1,p
m (�N−1 ). Applying the induc-

tion hypothesis, we can deduce that

∂iu ∈ Wm+1,p
m+1 (�

N
+ ) for i = 1, . . . , N − 1.

It remains to prove that v = ∂Nu ∈ Wm+1,p
m+1 (�

N
+ ). This is a consequence of the fact

that v belongs to Wm,p
m (�N

+ ) and

∂i∂Nu = ∂N∂iu ∈ Wm,p
m+1(�

N
+ ), i = 1, . . . , N − 1,

∂N (∂Nu) = ∆u −
N−1∑
i=1

∂2i u ∈ Wm,p
m+1(�

N
+ ).

We can conlude that u ∈ W m+2,p
m+1 (�

N
+ ). �

Corollary 3.4. Let � � 1 and m � 1 be two integers.
(i) Under the assumption

N

p′
/∈ {1, . . . , �+ 1},
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for any f ∈ Wm−1,p
m+� (�

N
+ ) and g ∈ W

1
p′+m,p

m+� (Γ) satisfying the compatibility condition
(3.2) there exists a unique solution u ∈ Wm+1,p

m+� (�
N
+ ) of (P) and u satisfies

‖u‖W m+1,p
m+� (�N

+)
� C(‖f‖W m−1,p

m+� (�N
+)
+ ‖g‖

W

1
p′ +m,p

m+� (Γ)
)

where C = C(m, p, �, N) is a constant independent of u, f and g.
(ii) Under the assumption

m � � or
N

p
/∈ {1, . . . , � − m},

for any f ∈ Wm−1,p
m−� (�

N
+ ) and g ∈ W

1
p′+m,p

m−� (Γ) there exists a unique solution u ∈
Wm+1,p

m−� (�
N
+ )/A

∆
[1+�−N/p] of (P) and u satisfies

inf
q∈A∆[1+�−N/p]

‖u+ q‖W m+1,p
m−�

(�N
+)

� C(‖f‖W m−1,p
m−� (�N

+)
+ ‖g‖

W

1
p′ +m,p

m−� (Γ)
).
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Abstract

In this paper, we study the Stokes system in the half-space RN+ , with N � 2. We give existence and
uniqueness results in weighted Sobolev spaces. After the central case of the generalized solutions, we are
interested in strong solutions and symmetrically in very weak solutions by means of a duality argument.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is the resolution of the Stokes system

(
S+) ⎧⎪⎨⎪⎩

−�u + ∇π = f in RN+ ,

divu = h in RN+ ,

u = g on Γ = RN−1,
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with data and solutions which live in weighted Sobolev spaces, expressing at the same time their
regularity and their behavior at infinity. We will naturally base on the previously established
results on the harmonic and biharmonic operators (see [5–8]). We will also concentrate on the
basic weights because they are the most usual and they avoid the question of the kernel for this
operator and symmetrically the compatibility condition for the data. In a forthcoming work, we
will complete these results for the other types of weights in this class of spaces.

Among the first works on the Stokes problem in the half-space, we can cite Cattabriga. In
[11], he appeals to the potential theory to explicitly get the velocity and pressure fields. For the
homogeneous problem (f = 0 and h = 0), for instance, he shows that if g ∈ Lp(Γ ) and the
semi-norm |g|

W
1−1/p,p
0 (Γ )

< ∞, then ∇u ∈ Lp(RN+) and π ∈ Lp(RN+).

Similar results are given by Farwig and Sohr (see [12]) and Galdi (see [14]), who also have
chosen the setting of homogeneous Sobolev spaces. On the other hand, Maz’ya, Plamenevskiı̆
and Stupyalis (see [18]), work within the suitable setting of weighted Sobolev spaces and con-
sider different sorts of boundary conditions. However, their results are limited to the dimension 3
and to the Hilbertian framework in which they give generalized and strong solutions. This is
also the case of Boulmezaoud (see [10]), who only gives strong solutions. Otherwise, always
in dimension 3, by Fourier analysis techniques, Tanaka considers the case of very regular data,
corresponding to velocities which belong to Wm+3,2

2 (R3+), with m � 0 (see [19]).
Let us also quote, for the evolution Stokes or Navier–Stokes problems, Fujigaki and Miyakawa

(see [13]), who are interested in the behavior in t → +∞; Bochers and Miyakawa (see [9]) and
Kozono (see [17]), for the LN -decay property; Ukai (see [20]), for the Lp–Lq estimates and
Giga (see [15]), for the estimates in Hardy spaces.

This paper is organized as follows. Section 2 is devoted to the notations, functional setting
and recalls about the Stokes system in the whole space. In Section 3, we give some results on ho-
mogeneous problems with singular boundary conditions and we complete them by Theorem 3.5
with a detailed proof, which is a model for analogous results. In Section 4, we start our study
of the Stokes system in the half-space by the central case of generalized solutions which is the
pivot of this work. In Section 5, we consider the strong solutions and give regularity results ac-
cording to the data. In Section 6, we find very weak solutions to the homogeneous problem with
singular boundary conditions. The main results of this paper are Theorem 4.2 for the generalized
solutions, Theorems 5.2 and 5.6 for the strong solutions, Theorems 6.7 and 6.9 for the very weak
solutions.

2. Notations, functional framework and known results

2.1. Notations

For any real number p > 1, we always take p′ to be the Hölder conjugate of p, i.e.

1

p
+ 1

p′ = 1.

Let Ω be an open set of RN , N � 2. Writing a typical point x ∈ RN as x = (x′, xN), where
x′ = (x1, . . . , xN−1) ∈ RN−1 and xN ∈ R, we will especially look on the upper half-space RN+ =
{x ∈ RN ; xN > 0}. We let RN+ denote the closure of RN+ in RN and let Γ = {x ∈ RN ; xN = 0} ≡
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RN−1 denote its boundary. Let |x| = (x2
1 +· · ·+ x2

N)1/2 denote the Euclidean norm of x, we will
use two basic weights

� = (
1 + |x|2)1/2 and lg� = ln

(
2 + |x|2).

We denote by ∂i the partial derivative ∂
∂xi

, similarly ∂2
i = ∂i ◦∂i = ∂2

∂x2
i

, ∂2
ij = ∂i ◦∂j = ∂2

∂xi∂xj
, . . . .

More generally, if λ = (λ1, . . . , λN) ∈ NN is a multi-index, then

∂λ = ∂
λ1
1 · · ·∂λN

N = ∂ |λ|

∂x
λ1
1 · · ·∂x

λN

N

, where |λ| = λ1 + · · · + λN.

In the sequel, for any integer q , we will use the following polynomial spaces:

– Pq is the space of polynomials of degree smaller than or equal to q;

– P�
q is the subspace of harmonic polynomials of Pq ;

– P�2

q is the subspace of biharmonic polynomials of Pq ;
– A�

q is the subspace of polynomials of P�
q , odd with respect to xN , or equivalently, which

satisfy the condition ϕ(x′,0) = 0;
– N�

q is the subspace of polynomials of P�
q , even with respect to xN , or equivalently, which

satisfy the condition ∂Nϕ(x′,0) = 0,

with the convention that these spaces are reduced to {0} if q < 0. For any real number s, we
denote by [s] the integer part of s.

Given a Banach space B , with dual space B ′ and a closed subspace X of B , we denote by
B ′ ⊥ X the subspace of B ′ orthogonal to X, i.e.

B ′ ⊥ X = {
f ∈ B ′; ∀v ∈ X, 〈f, v〉 = 0

} = (B/X)′.

Lastly, if k ∈ Z, we will constantly use the notation {1, . . . , k} for the set of the first k positive
integers, with the convention that this set is empty if k is nonpositive.

2.2. Weighted Sobolev spaces

For any nonnegative integer m, real numbers p > 1, α and β , we define the following space:

W
m,p
α,β (Ω) = {

u ∈D′(Ω); 0 � |λ| � k, �α−m+|λ| (lg�)β−1 ∂λu ∈ Lp(Ω);
k + 1 � |λ| � m, �α−m+|λ|(lg�)β∂λu ∈ Lp(Ω)

}
, (2.1)

where

k =
{−1 if N

p
+ α /∈ {1, . . . ,m},

m − N
p

− α if N
p

+ α ∈ {1, . . . ,m}.

Note that W
m,p
α,β (Ω) is a reflexive Banach space equipped with its natural norm
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‖u‖W
m,p
α,β (Ω) =

( ∑
0�|λ|�k

∥∥�α−m+|λ|(lg�)β−1∂λu
∥∥p

Lp(Ω)

+
∑

k+1�|λ|�m

∥∥�α−m+|λ|(lg�)β∂λu
∥∥p

Lp(Ω)

)1/p

.

We also define the semi-norm

|u|Wm,p
α,β (Ω) =

( ∑
|λ|=m

∥∥�α(lg�)β∂λu
∥∥p

Lp(Ω)

)1/p

.

The weights in the definition (2.1) are chosen so that the corresponding space satisfies two fun-

damental properties. On the one hand, D(RN+) is dense in W
m,p
α,β (RN+). On the other hand, the

following Poincaré-type inequality holds in W
m,p
α,β (RN+) (see [5, Theorem 1.1]): if

N

p
+ α /∈ {1, . . . ,m} or (β − 1)p �= −1, (2.2)

then the semi-norm | · |Wm,p
α,β (RN+ ) defines on W

m,p
α,β (RN+)/Pq∗ a norm which is equivalent to the

quotient norm,

∀u ∈ W
m,p
α,β

(
RN+

)
, ‖u‖W

m,p
α,β (RN+ )/Pq∗ � C|u|Wm,p

α,β (RN+ ), (2.3)

with q∗ = inf(q,m − 1), where q is the highest degree of the polynomials contained in
W

m,p
α,β (RN+). Now, we define the space

W̊
m,p
α,β

(
RN+

) = D(
RN+

)‖·‖
W

m,p
α,β

(RN+ );
which will be characterized in Lemma 2.2 as the subspace of functions with null traces in

W
m,p
α,β (RN+). From that, we can introduce the space W

−m,p′
−α,−β(RN+) as the dual space of W̊

m,p
α,β (RN+).

In addition, under the assumption (2.2), | · |Wm,p
α,β (RN+ ) is a norm on W̊

m,p
α,β (RN+) which is equiva-

lent to the full norm ‖ · ‖W
m,p
α,β (RN+ ). We will now recall some properties of the weighted Sobolev

spaces W
m,p
α,β (RN+). We have the algebraic and topological imbeddings:

W
m,p
α,β

(
RN+

)
↪→ W

m−1,p

α−1,β

(
RN+

)
↪→ ·· · ↪→ W

0,p
α−m,β

(
RN+

)
if

N

p
+ α /∈ {1, . . . ,m}.

When N
p

+ α = j ∈ {1, . . . ,m}, then we have

W
m,p
α,β ↪→ ·· · ↪→ W

m−j+1,p

α−j+1,β ↪→ W
m−j,p

α−j,β−1 ↪→ ·· · ↪→ W
0,p

α−m,β−1.

Note that in the first case, for any γ ∈ R such that N
p

+ α − γ /∈ {1, . . . ,m} and m ∈ N, the
mapping

u ∈ W
m,p
α,β

(
RN+

) �−→ �γ u ∈ W
m,p
α−γ,β

(
RN+

)
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is an isomorphism. In both cases and for any multi-index λ ∈ NN , the mapping

u ∈ W
m,p
α,β

(
RN+

) �−→ ∂λu ∈ W
m−|λ|,p
α,β

(
RN+

)
is continuous. Finally, it can be readily checked that the highest degree q of the polynomials
contained in W

m,p
α,β (RN+) is given by

q =

⎧⎪⎪⎨⎪⎪⎩
m − (N

p
+ α) − 1, if

{
N
p

+ α ∈ {1, . . . ,m} and (β − 1)p � −1, or
N
p

+ α ∈ {j ∈ Z; j � 0} and βp � −1,

[m − (N
p

+ α)], otherwise.

(2.4)

Remark 2.1. In the case β = 0, we simply denote the space W
m,p

α,0 (Ω) by W
m,p
α (Ω). In [16],

Hanouzet introduced a class of weighted Sobolev spaces without logarithmic factors, with the
same notation. We recall his definition under the notation H

m,p
α (Ω):

Hm,p
α (Ω) = {

u ∈ D′(Ω); 0 � |λ| � m, �α−m+|λ|∂λu ∈ Lp(Ω)
}
.

It is clear that if N
p

+ α /∈ {1, . . . ,m}, we have W
m,p
α (Ω) = H

m,p
α (Ω). The fundamental differ-

ence between these two families of spaces is that the assumption (2.2) and thus the Poincaré-
type inequality (2.3), hold for any value of (N,p,α) in W

m,p
α (Ω), but not in H

m,p
α (Ω) if

N
p

+ α ∈ {1, . . . ,m}.

2.3. The spaces of traces

In order to define the traces of functions of W
m,p
α (RN+) (here we do not consider the case

β �= 0), for any σ ∈ ]0,1[, we introduce the space

W
σ,p

0

(
RN

) =
{
u ∈D′(RN

); w−σ u ∈ Lp
(
RN

)
and

∫
RN×RN

|u(x) − u(y)|p
|x − y|N+σp

dx dy < ∞
}
,

(2.5)

where w = � if N/p �= σ and w = �(lg�)1/σ if N/p = σ . It is a reflexive Banach space equipped
with its natural norm

‖u‖W
σ,p
0 (RN) =

(∥∥∥∥ u

wσ

∥∥∥∥p

Lp(RN)

+
∫

RN×RN

|u(x) − u(y)|p
|x − y|N+σp

dx dy

)1/p

.

Similarly, for any real number α ∈ R, we define the space

Wσ,p
α

(
RN

) =
{
u ∈D′(RN

); wα−σ u ∈ Lp
(
RN

)
,∫

N N

|�α(x)u(x) − �α(y)u(y)|p
|x − y|N+σp

dx dy < ∞
}
,

R ×R
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where w = � if N/p + α �= σ and w = �(lg�)1/(σ−α) if N/p + α = σ . For any s ∈ R+, we set

Ws,p
α

(
RN

) = {
u ∈ D′(RN

); 0 � |λ| � k, �α−s+|λ|(lg�)−1∂λu ∈ Lp
(
RN

);
k + 1 � |λ| � [s] − 1, �α−s+|λ|∂λu ∈ Lp

(
RN

); |λ| = [s], ∂λu ∈ Wσ,p
α

(
RN

)}
,

where k = s − N/p − α if N/p + α ∈ {σ, . . . , σ + [s]}, with σ = s − [s] and k = −1 otherwise.
It is a reflexive Banach space equipped with the norm

‖u‖W
s,p
α (RN) =

( ∑
0�|λ|�k

∥∥�α−s+|λ|(lg�)−1∂λu
∥∥p

Lp(RN)

+
∑

k+1�|λ|�[s]−1

∥∥�α−s+|λ|∂λu
∥∥p

Lp(RN)

)1/p

+
∑

|λ|=[s]

∥∥∂λu
∥∥

W
σ,p
α (RN)

.

We can similarly define, for any real number β , the space

W
s,p
α,β

(
RN

) = {
v ∈ D′(RN

); (lg�)βv ∈ Ws,p
α

(
RN

)}
.

We can prove some properties of the weighted Sobolev spaces W
s,p
α,β (RN). We have the algebraic

and topological imbeddings in the case where N/p + α /∈ {σ, . . . , σ + [s] − 1}:

W
s,p
α,β

(
RN

)
↪→ W

s−1,p

α−1,β

(
RN

)
↪→ ·· · ↪→ W

σ,p
α−[s],β

(
RN

)
,

W
s,p
α,β

(
RN

)
↪→ W

[s],p
α+[s]−s,β

(
RN

)
↪→ ·· · ↪→ W

0,p
α−s,β

(
RN

)
.

When N/p + α = j ∈ {σ, . . . , σ + [s] − 1}, then we have

W
s,p
α,β ↪→ ·· · ↪→ W

s−j+1,p

α−j+1,β ↪→ W
s−j,p

α−j,β−1 ↪→ ·· · ↪→ W
σ,p

α−[s],β−1,

W
s,p
α,β ↪→ W

[s],p
α+[s]−s,β ↪→ ·· · ↪→ W

[s]−j+1,p

α−σ−j+1,β ↪→ W
[s]−j,p

α−σ−j,β−1 ↪→ ·· · ↪→ W
0,p

α−s,β−1.

If u is a function on RN+ , we denote its trace of order j on the hyperplane Γ by

∀j ∈ N, γju :x′ ∈ RN−1 �−→ ∂
j
Nu(x′,0).

Let us recall the following trace lemma due to Hanouzet (see [16]) and extended by Amrouche
and Nečasová (see [5]) to this class of weighted Sobolev spaces:

Lemma 2.2. For any integer m � 1 and real number α, the mapping

γ = (γ0, γ1, . . . , γm−1) :D(
RN+

) −→
m−1∏

D(
RN−1)
j=0
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can be extended to a linear continuous mapping, still denoted by γ ,

γ :Wm,p
α

(
RN+

) −→
m−1∏
j=0

Wm−j−1/p,p
α

(
RN−1).

Moreover γ is surjective and Kerγ = W̊
m,p
α (RN+).

2.4. The Stokes system in the whole space

On the Stokes problem in RN

(S): −�u + ∇π = f and divu = h in RN,

let us recall the fundamental result on which we are based in the sequel. First, for any k ∈ Z, we
introduce the space

Sk = {
(λ,μ) ∈ Pk ×P�

k−1; divλ = 0, −�λ + ∇μ = 0
}
.

Theorem 2.3. (See Alliot and Amrouche [1].) Let � ∈ Z and assume that

N/p′ /∈ {1, . . . , �} and N/p /∈ {1, . . . ,−�}.

For any (f , g) ∈ (W
−1,p
� (RN) × W

0,p
� (RN)) ⊥ S[1+�−N/p′], problem (S) admits a solution

(u,π) ∈ W
1,p

� (RN) × W
0,p

� (RN), unique up to an element of S[1−�−N/p], with the estimate

inf
(λ,μ)∈S[1−�−N/p]

(‖u + λ‖
W

1,p
� (RN)

+ ‖π + μ‖
W

0,p
� (RN)

)
� C

(‖f ‖
W

−1,p
� (RN)

+ ‖g‖
W

0,p
� (RN)

)
.

We also have the following result for more regular data:

Theorem 2.4. (See Alliot and Amrouche [1].) Let � ∈ Z and m � 1 be two integers and assume
that

N/p′ /∈ {1, . . . , � + 1} and N/p /∈ {1, . . . ,−� − m}.

For any (f , g) ∈ (W
m−1,p

m+� (RN) × W
m,p

m+�(R
N)) ⊥ S[1+�−N/p′], problem (S) admits a solution

(u,π) ∈ W
m+1,p

m+� (RN) × W
m,p

m+�(R
N), unique up to an element of S[1−�−N/p], with the estimate

inf
(λ,μ)∈S[1−�−N/p]

(‖u + λ‖
W

m+1,p
m+� (RN)

+ ‖π + μ‖W
m,p
m+�(R

N)

)
� C

(‖f ‖
W

m−1,p
m+� (RN)

+ ‖g‖W
m,p
m+�(R

N)

)
.

Note that if we suppose � = 0, then S[1−N/p′] = P [1−N/p′] × {0} and the orthogonality con-
dition (f , g) ⊥ S[1−N/p′] is equivalent to f ⊥ P [1−N/p′].
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3. Homogeneous problems with singular boundary conditions

The way we will take to solve the Stokes system is based on the existence of very weak
solutions to homogeneous problems with singular boundary conditions. The first one is the bi-
harmonic problem: find u ∈ W

1,p

�−1(R
N+) solution to the problem

(P): �2u = 0 in RN+ , u = g0 and ∂Nu = g1 on Γ,

where g0 ∈ W
1−1/p,p

�−1 (Γ ) and g1 ∈ W
−1/p,p

�−1 (Γ ) are given. We begin to define for any integer q ,
the polynomial space Bq as follows:

Bq = {
u ∈P�2

q ; u = ∂Nu = 0 on Γ
}
.

Theorem 3.1. (See Amrouche and Raudin [8].) Let � ∈ Z and assume that

N/p′ /∈ {1, . . . , � − 1} and N/p /∈ {1, . . . ,−� + 1}. (3.1)

For any g0 ∈ W
1−1/p,p

�−1 (Γ ) and g1 ∈ W
−1/p,p

�−1 (Γ ) satisfying the compatibility condition

∀ϕ ∈ B[2+�−N/p′], 〈g1,�ϕ〉Γ − 〈g0, ∂N�ϕ〉Γ = 0, (3.2)

problem (P) admits a solution u ∈ W
1,p

�−1(R
N+), unique up to an element of B[2−�−N/p], with the

estimate

inf
q∈B[2−�−N/p]

‖u + q‖
W

1,p
�−1(R

N+ )
� C

(‖g0‖W
1−1/p,p
�−1 (Γ )

+ ‖g1‖W
−1/p,p
�−1 (Γ )

)
.

Remark 3.2. (i) In the case where � = 1, if 1 − N/p′ < 0, then B[3−N/p′] = {0} and if
1 − N/p′ � 0, then B[3−N/p′] = B2 = Rx2

N .

(ii) We also established a result for the lower case, with u ∈ W
0,p

�−2(R
N+), but we do not use it

in this paper.

We will also need a result of this type about the Neumann problem for the Laplacian: find
u ∈ W

0,p

�−2(R
N+) satisfying the problem

(Q): �u = 0 in RN+ and ∂Nu = g on Γ,

where g ∈ W
−1−1/p,p

�−2 (Γ ).

Theorem 3.3. (See Amrouche [6].) Let � ∈ Z and assume that

N/p′ /∈ {1, . . . , � − 2} and N/p /∈ {1, . . . ,−� + 2}. (3.3)

For any g ∈ W
−1−1/p,p

�−2 (Γ ) satisfying the compatibility condition

∀ϕ ∈N�
[�−N/p′], 〈g,ϕ〉

W
−1−1/p,p

(Γ )×W
2−1/p′,p′

(Γ )
= 0, (3.4)
�−2 −�+2
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problem (Q) admits a solution u ∈ W
0,p

�−2(R
N+), unique up to an element of N�[2−�−N/p], with the

estimate

inf
q∈N�[2−�−N/p]

‖u + q‖
W

0,p
�−2(R

N+ )
� C‖g‖

W
−1−1/p,p
�−2 (Γ )

.

With the same arguments as for Theorem 3.3, we can prove an intermediate result for this
problem:

Theorem 3.4. Let � ∈ Z. Under hypothesis (3.1), for any g ∈ W
−1/p,p

�−1 (Γ ) satisfying the compat-

ibility condition (3.4), problem (Q) admits a solution u ∈ W
1,p

�−1(R
N+), unique up to an element of

N�[2−�−N/p], with the estimate

inf
q∈N�[2−�−N/p]

‖u + q‖
W

1,p
�−1(R

N+ )
� C‖g‖

W
−1/p,p
�−1 (Γ )

.

Now, we will establish a similar result about the Dirichlet problem for the Laplacian with very
singular boundary conditions: find u ∈ W

−1,p

�−2 (RN+) satisfying the problem

(R): �u = 0 in RN+ and u = g on Γ,

where g ∈ W
−1−1/p,p

�−2 (Γ ).

Theorem 3.5. Let � ∈ Z. Under hypothesis (3.3), for any g ∈ W
−1−1/p,p

�−2 (Γ ) satisfying the com-
patibility condition

∀ϕ ∈A�
[1+�−N/p′], 〈g, ∂Nϕ〉

W
−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

= 0, (3.5)

problem (R) admits a solution u ∈ W
−1,p

�−2 (RN+), unique up to an element of A�[1−�−N/p], with
the estimate

inf
q∈A�[1−�−N/p]

‖u + q‖
W

−1,p
�−2 (RN+ )

� C‖g‖
W

−1−1/p,p
�−2 (Γ )

.

Firstly, we must give a meaning to traces for a special class of distributions. We introduce the
spaces

Y�

(
RN+

) = {
v ∈ W

−1,p

�−2

(
RN+

); �v ∈ W
0,p

�+1

(
RN+

)}
,

Y�,1
(
RN+

) = {
v ∈ W

−1,p

�−2

(
RN+

); �v ∈ W
0,p

�+1,1

(
RN+

)}
.

They are reflexive Banach spaces equipped with their natural norms:

‖v‖Y�(R
N+ ) = ‖v‖

W
−1,p
�−2 (RN+ )

+ ‖�v‖
W

0,p
�+1(R

N+ )
,

‖v‖Y�,1(R
N+ ) = ‖v‖

W
−1,p
�−2 (RN+ )

+ ‖�v‖
W

0,p
�+1,1(R

N+ )
.
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Lemma 3.6. Let � ∈ Z. Under hypothesis (3.3), the space D(RN+) is dense in Y�(RN+) and in
Y�,1(RN+).

Proof. For every continuous linear form T ∈ (Y�(RN+))′, there exists a unique pair (f, g) ∈
W̊

1,p′
−�+2(R

N+) × W
0,p′
−�−1(R

N+), such that

∀v ∈ Y�

(
RN+

)
, 〈T ,v〉 = 〈f, v〉

W̊
1,p′
−�+2(R

N+ )×W
−1,p
�−2 (RN+ )

+
∫

R
N+

g�v dx. (3.6)

Thanks to the Hahn–Banach theorem, it suffices to show that any T which vanishes on D(RN+)

is actually zero on Y�(RN+). Let us suppose that T = 0 on D(RN+), thus on D(RN+). Then we can
deduce from (3.6) that

f + �g = 0 in RN+ ,

hence we have �g ∈ W̊
1,p′
−�+2(R

N+). Let f̃ ∈ W
1,p′
−�+2(R

N) and g̃ ∈ W
0,p′
−�−1(R

N) be respectively

the extensions by 0 of f and g to RN . Thanks to (3.6), it is clear that f̃ + �g̃ = 0 in RN , and

thus �g̃ ∈ W
1,p′
−�+2(R

N). Now, thanks to the isomorphism results for the Laplace operator in RN

(see [4]), we can deduce that g̃ ∈ W
3,p′
−�+2(R

N), under hypothesis (3.3). Since g̃ is an extension

by 0, it follows that g ∈ W̊
3,p′
−�+2(R

N+). Then, by density of D(RN+) in W̊
3,p′
−�+2(R

N+), there exists

a sequence (ϕk)k∈N ⊂ D(RN+) such that ϕk → g in W̊
3,p′
−�+2(R

N+). Thus, for any v ∈ Y�(RN+), we
have

〈T ,v〉 = 〈−�g,v〉
W̊

1,p′
−�+2(R

N+ )×W
−1,p
�−2 (RN+ )

+ 〈g,�v〉
W̊

3,p′
−�+2(R

N+ )×W
−3,p
�−2 (RN+ )

= lim
k→∞

{〈−�ϕk, v〉
W̊

1,p′
−�+2(R

N+ )×W
−1,p
�−2 (RN+ )

+ 〈ϕk,�v〉
W̊

3,p′
−�+2(R

N+ )×W
−3,p
�−2 (RN+ )

}
= lim

k→∞

{
−

∫
R

N+

ϕk�v dx +
∫

R
N+

ϕk�v dx

}

= 0,

i.e. T is identically zero.

For the density of D(RN+) in Y�,1(RN+), the only difference in the proof concerns the logarith-

mic factors in the weights, with g ∈ W
0,p′
−�−1,−1(R

N+). �
Thanks to this density lemma, we can prove the following result of traces:

Lemma 3.7. Let � ∈ Z. Under hypothesis (3.3), the trace mapping γ0 :D(RN+) → D(RN−1), can
be extended to a linear continuous mapping
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γ0 :Y�

(
RN+

) −→ W
−1−1/p,p

�−2 (Γ ) if N/p′ /∈ {� − 1, �, � + 1},(
respectively γ0 :Y�,1

(
RN+

) −→ W
−1−1/p,p

�−2 (Γ ) if N/p′ ∈ {� − 1, �, � + 1}).
Moreover, we have the following Green formula

∀v ∈ Y�

(
RN+

)
, ∀ϕ ∈ W

3,p′
−�+2

(
RN+

)
such that ϕ = �ϕ = 0 on Γ,

〈�v,ϕ〉
W

0,p
�+1(R

N+ )×W
0,p′
−�−1(R

N+ )
− 〈v,�ϕ〉

W
−1,p
�−2 (RN+ )×W̊

1,p′
−�+2(R

N+ )

= 〈v, ∂Nϕ〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

(3.7)

(respectively the Green formula for v ∈ Y�,1(RN+), where the first term of the left-hand side is
replaced by 〈�v,ϕ〉

W
0,p
�+1,1(R

N+ )×W
0,p′
−�−1,−1(R

N+ )
).

Proof. Firstly, let us remark that for any ϕ ∈ W
3,p′
−�+2(R

N+), the boundary condition ϕ = �ϕ = 0
on Γ is equivalent to ϕ = ∂2

Nϕ = 0 on Γ . Moreover, if N/p′ /∈ {� − 1, �, � + 1}, we have the

imbedding W
3,p′
−�+2(R

N+) ↪→ W
0,p′
−�−1(R

N+). So we can write the following Green formula:

∀v ∈D(
RN+

)
, ∀ϕ ∈ W

3,p′
−�+2

(
RN+

)
such that ϕ = �ϕ = 0 on Γ,∫

R
N+

ϕ�v dx −
∫

R
N+

v�ϕ dx =
∫
Γ

v∂Nϕ dx′. (3.8)

Since �ϕ = 0 on Γ , we have the identity∫
R

N+

v�ϕ dx = 〈v,�ϕ〉
W

−1,p
�−2 (RN+ )×W̊

1,p′
−�+2(R

N+ )
.

This implies ∣∣〈v, ∂Nϕ〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

∣∣ � ‖v‖Y�(R
N+ )‖ϕ‖

W
3,p′
−�+2(R

N+ )
.

By Lemma 2.2, for any μ ∈ W
2−1/p′,p′
−�+2 (Γ ), there exists a lifting function ϕ ∈ W

3,p′
−�+2(R

N+) such
that ϕ = 0, ∂Nϕ = μ and ∂2

Nϕ = 0 on Γ , satisfying

‖ϕ‖
W

3,p′
−�+2(R

N+ )
� C‖μ‖

W
2−1/p′,p′
−�+2 (Γ )

,

where C is a constant not depending on ϕ and μ. Then we can deduce that

‖γ0v‖
W

−1−1/p,p
�−2 (Γ )

� C‖v‖Y�(R
N+ ).

Thus the linear mapping γ0 :v �→ v|Γ defined on D(RN+) is continuous for the norm of Y�(RN+).

Since D(RN+) is dense in Y�(RN+), γ0 can be extended by continuity to a mapping still called
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γ0 ∈ L(Y�(RN+); W
−1−1/p,p

�−2 (Γ )). Moreover, we also can deduce the formula (3.7) from (3.8) by

density of D(RN+) in Y�(RN+). To finish, note that if N/p′ ∈ {� − 1, �, � + 1}, we only have the

imbedding W
3,p′
−�+2(R

N+) ↪→ W
0,p′
−�−1,−1(R

N+), hence the necessity to introduce the space Y�,1(RN+)

and the corresponding Green formula with logarithmic factors for these three critical values. �
Proof of Theorem 3.5. We can observe that solve problem (R) is equivalent to find u ∈ Y�(RN+)

if N/p′ /∈ {� − 1, �, � + 1} (respectively u ∈ Y�,1(RN+) if N/p′ ∈ {� − 1, �, � + 1}), satisfying

∀v ∈ W
3,p′
−�+2

(
RN+

)
such that v = �v = 0 on Γ,

〈u,�v〉
W

−1,p
�−2 (RN+ )×W̊

1,p′
−�+2(R

N+ )
= −〈g, ∂Nv〉

W
−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

. (3.9)

Indeed the direct implication is straightforward. Conversely, if u satisfies (3.9) then we have
for any ϕ ∈D(RN+),

〈�u,ϕ〉
W

−3,p
�−2 (RN+ )×W̊

3,p′
−�+2(R

N+ )
= 〈u,�ϕ〉

W
−1,p
�−2 (RN+ )×W̊

1,p′
−�+2(R

N+ )
= 0,

thus �u = 0 in RN+ . Moreover, by the Green formula (3.7), we have

∀v ∈ W
3,p′
−�+2

(
RN+

)
such that v = �v = 0 on Γ,

〈g, ∂Nv〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

= 〈u, ∂Nv〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

.

By Lemma 2.2, for any μ ∈ W
2−1/p′,p′
−�+2 (Γ ), there exists v ∈ W

3,p′
−�+2(R

N+) such that v = 0,
∂Nv = μ, ∂2

Nv = 0 on Γ . Consequently,

〈u − g,μ〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

= 0,

i.e. u − g = 0 on Γ . Thus u satisfies (R).

Furthermore, for any f ∈ W̊
1,p′
−�+2(R

N+) ⊥ A�[1−�−N/p], we know that (see [5]) there exists a

unique v ∈ W
3,p′
−�+2(R

N+)/A�
[1+�−N/p′] such that

�v = f in RN+ , v = 0 on Γ,

with the estimate

‖v‖
W

3,p′
−�+2(R

N+ )/A�
[1+�−N/p′]

� C‖f ‖
W

1,p′
−�+2(R

N+ )
,

where C denotes a generic constant not depending on v and f . Now, let us consider the lin-

ear form T :f �→ −〈g, ∂Nv〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

defined on W̊
1,p′
−�+2(R

N+) ⊥ A�[1−�−N/p].

Thanks to (3.5), we have for any q ∈A� ′ ,
[1+�−N/p ]
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|Tf | = ∣∣〈g, ∂N(v + q)
〉
W

−1−1/p,p
�−2 (Γ )×W

2−1/p′,p′
−�+2 (Γ )

∣∣
� C‖g‖

W
−1−1/p,p
�−2 (Γ )

‖v + q‖
W

3,p′
−�+2(R

N+ )

� C‖g‖
W

−1−1/p,p
�−2 (Γ )

‖v‖
W

3,p′
−�+2(R

N+ )/A�
[3−N/p′]

� C‖g‖
W

−1−1/p,p
�−2 (Γ )

‖f ‖
W

1,p′
−�+2(R

N+ )
.

Thus we have shown that T is continuous on W̊
1,p′
−�+2(R

N+) ⊥ A�[1−�−N/p] and then, according

to Riesz representation theorem, there exists a unique u ∈ W
−1,p

�−2 (RN+)/A�[1−�−N/p] such that

Tf = 〈u,f 〉
W

−1,p
�−2 (RN+ )×W̊

1,p′
−�+2(R

N+ )
. So we have (3.9) and u is the unique solution to prob-

lem (R). �
Similarly to the Neumann problem, we can give an intermediate result:

Theorem 3.8. Let � ∈ Z. Under hypothesis (3.1), for any g ∈ W
−1/p,p

�−1 (Γ ) satisfying the compat-

ibility condition (3.5), problem (R) admits a solution u ∈ W
0,p

�−1(R
N+), unique up to an element

of A�[1−�−N/p], with the estimate

inf
q∈A�[1−�−N/p]

‖u + q‖
W

0,p
�−1(R

N+ )
� C‖g‖

W
−1/p,p
�−1 (Γ )

.

4. Generalized solutions to the Stokes system in RN+RN+RN+

We will establish a first result about the generalized solutions to (S+) in the homogeneous
case. The following proposition is quite natural and we can find similar results in the literature
although not expressed in weighted Sobolev spaces (see e.g. Farwig and Sohr [12], Galdi [14],
Cattabriga [11]). Moreover, we take up some ideas in [12] and we considerably simplify the
proof.

Proposition 4.1. For any g ∈ W
1−1/p,p

0 (Γ ), the Stokes problem

−�u + ∇π = 0 in RN+ , (4.1)

divu = 0 in RN+ , (4.2)

u = g on Γ, (4.3)

has a unique solution (u,π) ∈ W
1,p

0 (RN+) × Lp(RN+), with the estimate

‖u‖
W

1,p
0 (RN+ )

+ ‖π‖Lp(RN+ ) � C‖g‖
W

1−1/p,p
0 (Γ )

. (4.4)

Proof. (1) Firstly, we will show that system (4.1)–(4.3) can be reduced to three problems on the
fundamental operators �2 and �.

Applying the operator div to the first equation (4.1), we obtain

�π = 0 in RN+ . (4.5)
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Now, applying the operator � to the same equation (4.1), we deduce

�2u = 0 in RN+ . (4.6)

From the boundary condition (4.3), we take out

uN = gN on Γ, (4.7)

and moreover div′ u′ = div′ g′ on Γ , where div′ u′ = ∑N−1
i=1 ∂iui .

Since divu = 0 in RN+ , we also have divu = 0 on Γ , then we can write ∂NuN + div′ u′ = 0
on Γ , hence

∂NuN = −div′ g′ on Γ. (4.8)

Combining (4.6)–(4.8), we obtain the following biharmonic problem

(P): �2uN = 0 in RN+ , uN = gN and ∂NuN = −div′ g′ on Γ.

Then, combining (4.5) with the trace on Γ of the N th component in Eqs. (4.1), we obtain the
following Neumann problem

(Q): �π = 0 in RN+ and ∂Nπ = �uN on Γ.

Lastly, if we consider the N − 1 first components of Eqs. (4.1) and (4.3), we can write the
following Dirichlet problem

(R): �u′ = ∇′π in RN+ and u′ = g′ on Γ.

(2) Now, we will solve these three problems.
Step 1: Problem (P). Since g ∈ W

1−1/p,p

0 (Γ ), we have gN ∈ W
1−1/p,p

0 (Γ ) and div′ g′ ∈
W

−1/p,p

0 (Γ ). So (P) is a homogeneous biharmonic problem with singular boundary condi-
tions, and we can apply Theorem 3.1 provided the compatibility condition (3.2) is fulfilled.
If 1 − N/p′ < 0, then B[3−N/p′] = {0} and the condition vanishes. If 1 − N/p′ � 0, then
B[3−N/p′] = Rx2

N and this condition is equivalent to

〈div′ g′,1〉
W

−1/p,p
0 (Γ )×W

1/p,p′
0 (Γ )

= 0. (4.9)

Since D(RN−1) is dense in W
1/p,p′
0 (Γ ), we know that there exists a sequence (ϕk)k∈N ⊂

D(RN−1) such that ϕk → 1 in W
1/p,p′
0 (Γ ), hence we can deduce

〈div′ g′,1〉
W

−1/p,p
0 (Γ )×W

1/p,p′
0 (Γ )

= − lim
k→∞

∫
RN−1

g′.∇ϕk dx′ = 0.

Thus the orthogonality condition is fulfilled and problem (P) has a unique solution uN ∈
W

1,p
(RN+), satisfying
0
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‖uN‖
W

1,p
0 (RN+ )

� C
(‖gN‖

W
1−1/p,p
0 (Γ )

+ ‖div′ g′‖
W

−1/p,p
0 (Γ )

)
� C‖g‖

W
1−1/p,p
0 (Γ )

. (4.10)

Step 2: Problem (Q). Since �2uN = 0 in RN+ , we have �uN ∈ Y2(RN+) and also �uN ∈
Y2,1(RN+), hence �uN |Γ ∈ W

−1−1/p,p

0 (Γ ) by Lemma 3.7. Then we can apply Theorem 3.3,
provided the compatibility condition (3.4) is fulfilled, i.e.

∀ϕ ∈N�
[2−N/p′], 〈�uN,ϕ〉

W
−1−1/p,p
0 (Γ )×W

2−1/p′,p′
0 (Γ )

= 0.

Knowing that N�
[2−N/p′] ⊂ P1, an argument similar to that of the condition (4.9) in step 1 gives

us this relation. We can conclude that problem (Q) has a unique solution π ∈ Lp(RN+), satisfying

‖π‖Lp(RN+ ) � C‖�uN‖
W

−1−1/p,p
0 (Γ )

� C‖�uN‖Y2(R
N+ ) = C‖�uN‖

W
−1,p
0 (RN+ )

� C‖uN‖
W

1,p
0 (RN+ )

� C‖g‖
W

1−1/p,p
0 (Γ )

. (4.11)

Step 3: Problem (R). By step 2, we have ∇′π ∈ W
−1,p

0 (RN+)
N−1

and moreover

g′ ∈ W
1−1/p,p

0 (Γ )
N−1

. Since A�
[1−N/p′] = {0}, we know that problem (R) has a unique solution

u′ ∈ W
1,p

0 (RN+)
N−1

(see [5, Theorem 3.1]), satisfying

‖u′‖
W

1,p
0 (RN+ )

N−1 � C
(‖∇′π‖

W
−1,p
0 (RN+ )

N−1 + ‖g′‖
W

1−1/p,p
0 (Γ )

N−1

)
� C

(‖π‖Lp(RN+ ) + ‖g′‖
W

1−1/p,p
0 (Γ )

N−1

)
� C‖g‖

W
1−1/p,p
0 (Γ )

. (4.12)

(3) In order, we have found uN , π and u′, which satisfy (4.3) and partially satisfy (4.1), i.e.

−�u′ + ∇′π = 0 in RN+ .

It remains to show they satisfy (4.2) and the N th component of (4.1), i.e.

−�uN + ∂Nπ = 0 in RN+ .

Thanks to (4.5) and (4.6), we obtain

�(�uN − ∂Nπ) = �2uN = 0 in RN+ .

With the boundary condition of (Q), we can deduce that the distribution �uN − ∂Nπ ∈
W

−1,p

0 (RN+) satisfies the following Dirichlet problem

�(�uN − ∂Nπ) = 0 in RN+ , �uN − ∂Nπ = 0 on Γ.
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Thanks to Theorem 3.5, we necessarily have �uN − ∂Nπ = 0. Thus (u,π) completely satisfies
(4.1).

Now, applying the operator div to (4.1), we have −�divu + �π = 0 in RN+ , and by the main
equation of (Q), i.e. (4.5), we obtain �divu = 0 in RN+ . Moreover, from the boundary condition
in (R), we get div′ u′ = div′ g′ on Γ . Then, with the boundary condition in (P), we can write

divu = div′u′ + ∂NuN = div′ g′ − div′ g′ = 0 on Γ.

So, we have

�divu = 0 in RN+ , divu = 0 on Γ,

with divu ∈ Lp(RN+) and then by Theorem 3.8, we can deduce that divu = 0 in RN+ , i.e. (4.2) is
satisfied.

(4) Finally, let us remark that the uniqueness of (u,π) is a consequence of the uniqueness of
the solutions to problems (P), (Q) and (R). Moreover, the estimate (4.4) is a consequence of the
estimates (4.10)–(4.12). �

Now, we can solve the complete problem (S+). For this, we will show that it can be reduced
to a homogeneous problem, solved by Proposition 4.1.

Theorem 4.2. For any f ∈ W
−1,p

0 (RN+), h ∈ Lp(RN+) and g ∈ W
1−1/p,p

0 (Γ ), problem (S+)

admits a unique solution (u,π) ∈ W
1,p

0 (RN+) × Lp(RN+), and there exists a constant C such that

‖u‖
W

1,p
0 (RN+ )

+ ‖π‖Lp(RN+ )

� C
(‖f ‖

W
−1,p
0 (RN+ )

+ ‖h‖Lp(RN+ ) + ‖g‖
W

1−1/p,p
0 (Γ )

)
. (4.13)

Proof. Firstly, let us write f = div F, where F = (F i )1�i�N ∈ Lp(RN+)
N

, with the estimate

‖F‖
Lp(RN+ )

N � C‖f ‖
W

−1,p
0 (RN+ )

;

and let us respectively denote by F̃ = (F̃ i )1�i�N ∈ Lp(RN)
N

and h̃ ∈ Lp(RN) the extensions

by 0 of F and h to RN . By Theorem 2.3, we know that there exists (ũ, π̃) ∈ W
1,p

0 (RN)×Lp(RN)

solution to the problem

(S̃): −�ũ + ∇π̃ = div F̃ and div ũ = h̃ in RN,

provided the condition div F̃ ⊥ P [1−N/p′] is fulfilled. If 1 − N/p′ < 0, we obviously have
P [1−N/p′] = {0}, thus the condition vanishes. If 1 − N/p′ � 0, then we have P [1−N/p′] = RN

and this condition is equivalent to

∀i = 1, . . . ,N, 〈div F̃ i ,1〉 −1,p N 1,p′
N

= 0.

W0 (R )×W0 (R )
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This is exactly the same argument as for the condition (4.9) in the previous proof. Thus the or-
thogonality condition is fulfilled, hence the existence of (ũ, π̃) ∈ W

1,p

0 (RN) × Lp(RN) solution
to problem (S̃), satisfying

‖ũ‖
W

1,p
0 (RN)

+ ‖π̃‖Lp(RN) � C
(‖div F̃‖

W
−1,p
0 (RN)

+ ‖h̃‖Lp(RN)

)
� C

(‖f ‖
W

−1,p
0 (RN+ )

+ ‖h‖Lp(RN+ )

)
. (4.14)

Consequently, we can reduce the system (S+) to the homogeneous problem(
S�

)
: −�v + ∇ϑ = 0 and divv = 0 in RN+ , v = g� on Γ,

where we have set g� = g − ũ|Γ ∈ W
1−1/p,p

0 (Γ ). Now, thanks to Proposition 4.1, we know that

(S�) admits a unique solution (v, ϑ) ∈ W
1,p

0 (RN+) × Lp(RN+), satisfying

‖v‖
W

1,p
0 (RN+ )

+ ‖ϑ‖Lp(RN+ ) � C
∥∥g�

∥∥
W

1−1/p,p
0 (Γ )

� C
(‖f ‖

W
−1,p
0 (RN+ )

+ ‖h‖Lp(RN+ ) + ‖g‖
W

1−1/p,p
0 (Γ )

)
. (4.15)

Then, (u,π) = (v + ũ|
R

N+ , ϑ + π̃ |
R

N+ ) ∈ W
1,p

0 (RN+) × Lp(RN+) is solution to (S+) and the esti-
mate (4.13) is a consequence of the estimates (4.14) and (4.15). Finally, the uniqueness of the
solution to (S+) is a straightforward consequence of Proposition 4.1. �
Remark 4.3. In a forthcoming work, we will show that under hypotheses of Theorem 4.2 and if
moreover f ∈ W

−1,q

0 (RN+), h ∈ Lq(RN+) and g ∈ W
1−1/q,q

0 (Γ ), for any real number q > 1, then

the solution (u,π) given by Theorem 4.2 verifies, besides, (u,π) ∈ W
1,q

0 (RN+) × Lq(RN+).

5. Strong solutions and regularity for the Stokes system in RN+RN+RN+

In this section, we are interested in the existence of strong solutions (and then to regular so-
lutions, see Corollaries 5.5 and 5.7), i.e. of solutions (u,π) ∈ W

2,p

�+1(R
N+) × W

1,p

�+1(R
N+). Here,

we limit ourselves to the two cases � = 0 or � = −1. Note that in the case � = 0, we have
W

2,p

1 (RN+) ↪→ W
1,p

0 (RN+) and W
1,p

1 (RN+) ↪→ Lp(RN+). The proposition and theorem which fol-
low show that the generalized solution of Theorem 4.2, with a stronger hypothesis on the data, is
in fact a strong solution.

Proposition 5.1. Assume that N
p′ �= 1. For any g ∈ W

2−1/p,p

1 (Γ ), the Stokes problem (4.1)–(4.3)

has a unique solution (u,π) ∈ W
2,p

1 (RN+) × W
1,p

1 (RN+), with the estimate

‖u‖
W

2,p
1 (RN+ )

+ ‖π‖
W

1,p
1 (RN+ )

� C‖g‖
W

2−1/p,p
1 (Γ )

.

Proof. The arguments for the estimate are unchanged with respect to the proof of Proposi-
tion 4.1. For the surjectivity and the uniqueness, note that we always have the imbedding
W

2−1/p,p
(Γ ) ↪→ W

1−1/p,p
(Γ ). By Proposition 4.1, we can deduce that problem (4.1)–(4.3)
1 0
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admits a unique solution (u,π) ∈ W
1,p

0 (RN+) × Lp(RN+), satisfying the estimate (4.4). Then,
it suffices to go back to the proof of Proposition 4.1 and to use the established results about
problems (P), (Q) and (R), to show that in fact (u,π) ∈ W

2,p

1 (RN+) × W
1,p

1 (RN+). In order,
for problem (P), we find uN ∈ W

2,p

1 (RN+) (see [7, Lemma 4.9]); for problem (Q), thanks to

Theorem 3.4, we find π ∈ W
1,p

1 (RN+); for problem (R), we find u′ ∈ W
2,p

1 (RN+)
N−1

(see [5,
Theorem 3.3]). Note that for these three results, the condition N/p′ �= 1 is always necessary. �

Now, we can study the strong solutions for the complete problem (S+). As for the gen-
eralized solutions, we will show that it is equivalent to a homogeneous problem, solved by
Proposition 5.1. The following theorem was established in the case N = 3, p = 2, by Maz’ya,
Plamenevskiı̆ and Stupyalis (see [18]).

Theorem 5.2. Assume that N
p′ �= 1. For any f ∈ W

0,p

1 (RN+), h ∈ W
1,p

1 (RN+) and g ∈
W

2−1/p,p

1 (Γ ), problem (S+) admits a unique solution (u,π) which belongs to W
2,p

1 (RN+) ×
W

1,p

1 (RN+), with the estimate

‖u‖
W

2,p
1 (RN+ )

+ ‖π‖
W

1,p
1 (RN+ )

� C
(‖f ‖

W
0,p
1 (RN+ )

+ ‖h‖
W

1,p
1 (RN+ )

+ ‖g‖
W

2−1/p,p
1 (Γ )

)
.

Proof. Here again, the arguments for the estimate are unchanged with respect to the proof of
Theorem 4.2. For the surjectivity and the uniqueness, note that the imbedding
W

0,p

1 (RN+) ↪→ W
−1,p

0 (RN+) holds if N/p′ �= 1. Moreover, we have W
1,p

1 (RN+) ↪→ Lp(RN+) and

W
2−1/p,p

1 (Γ ) ↪→ W
1−1/p,p

0 (Γ ). Thus, thanks to Theorem 4.2, we know that problem (S+) ad-

mits a unique solution (u,π) ∈ W
1,p

0 (RN+) × Lp(RN+), satisfying the estimate (4.13). To show

that (u,π) ∈ W
2,p

1 (RN+) × W
1,p

1 (RN+), we want to find an extension f̃ of f to RN , such that the
orthogonality condition for the extended problem to the whole space (S̃) holds. To this end, we
still can write f = div F. Indeed, if N/p′ �= 1, for any f ∈ W

0,p

1 (RN+), the Dirichlet problem

�w = f in RN+ , w = 0 in Γ,

admits a unique solution w ∈ W
2,p

1 (RN+) (see [5, Theorem 3.3]). So, if we consider F = ∇w ∈
W

1,p

1 (RN+)
N

, we have f = div F. Now, it suffices to go back to the proof of Theorem 4.2.

Here again, we know that there exists a continuous linear extension operator from W
1,p

1 (RN+)

to W
1,p

1 (RN), so we get f̃ = div F̃ ∈ W
0,p

1 (RN) and h̃ ∈ W
1,p

1 (RN), hence the extended prob-

lem (S̃), which has, by Theorem 2.4, a solution (ũ, π̃) ∈ W
2,p

1 (RN) × W
1,p

1 (RN). Then, we

obtain the equivalent problem (S�) with g� ∈ W
2−1/p,p

1 (Γ ) and this problem is solved by Propo-
sition 5.1. �
Remark 5.3. To give a variant to this proof, we also can consider the extension f̃ ∈ W

0,p

1 (RN)

of f to RN defined by

f̃ (x′, xN) =
{

f (x′, xN) if xN > 0,
′
−f (x ,−xN) if xN < 0,
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and h̃ ∈ W
1,p

1 (RN) an extension of h to RN . Then by Theorem 2.4, there exists (ũ, π̃) solution
to the problem

(S̃): −�ũ + ∇π̃ = f̃ and div ũ = h̃ in RN,

provided the orthogonality condition f̃ ⊥ P [1−N/p′] is fulfilled. Here again, if 1−N/p′ < 0 this
condition vanishes and if 1 − N/p′ > 0, we have

∀i = 1, . . . ,N,

∫
RN

f̃ i (x
′, xN)dx = 0.

Thus the orthogonality condition holds. The rest of the proof is identical.

Remark 5.4. Similarly to Remark 4.3, we could show that under hypotheses of Theorem 5.2 and
if moreover f ∈ W

0,q

1 (RN+), h ∈ W
1,q

1 (RN+) and g ∈ W
2−1/q,q

1 (Γ ), with an arbitrary real number

q > 1, then the solution (u,π) given by Theorem 4.2 verifies, besides, (u,π) ∈ W
2,q

1 (RN+) ×
W

1,q

1 (RN+).

We will now establish a global regularity result of solutions to the Stokes system (S+), which
includes the case of strong solutions and which rests on Theorem 4.2 and a regularity argument.

Corollary 5.5. Let m ∈ N and assume that N
p′ �= 1 if m � 1. For any f ∈ W

m−1,p
m (RN+),

h ∈ W
m,p
m (RN+) and g ∈ W

m+1−1/p,p
m (Γ ), problem (S+) admits a unique solution (u,π) ∈

W
m+1,p
m (RN+) × W

m,p
m (RN+), with the estimate

‖u‖
W

m+1,p
m (RN+ )

+ ‖π‖W
m,p
m (RN+ )

� C
(‖f ‖

W
m−1,p
m (RN+ )

+ ‖h‖W
m,p
m (RN+ ) + ‖g‖

W
m+1−1/p,p
m (Γ )

)
.

Proof. Since we have W
m−1,p
m (RN+) ↪→ W

−1,p

0 (RN+), W
m,p
m (RN+) ↪→ Lp(RN+) and

W
m+1−1/p,p
m (Γ ) ↪→ W

1−1/p,p

0 (Γ ), thanks to Theorem 4.2, we know that problem (S+) admits

a unique solution (u,π) ∈ W
1,p

0 (RN+) × Lp(RN+). We will show by induction that

(f , h,g) ∈ W
m−1,p
m

(
RN+

) × W
m,p
m

(
RN+

) × W
m+1−1/p,p
m (Γ )

⇒ (u,π) ∈ W
m+1,p
m

(
RN+

) × W
m,p
m

(
RN+

)
. (5.1)

For m = 0, (5.1) is true. Assume that (5.1) is true for 0,1, . . . ,m and suppose that (f , h,g) ∈
W

m,p

m+1(R
N+) × W

m+1,p

m+1 (RN+) × W
m+2−1/p,p

m+1 (Γ ). Let us prove that (u,π) ∈ W
m+2,p

m+1 (RN+) ×
W

m+1,p

m+1 (RN+). Since W
m,p

m+1(R
N+) ↪→ W

m−1,p
m (RN+), W

m+1,p

m+1 (RN+) ↪→ W
m,p
m (RN+) and

W
m+2−1/p,p

m+1 (Γ ) ↪→ W
m+1−1/p,p
m (Γ ), we know that (u,π) ∈ W

m+1,p
m (RN+) × W

m,p
m (RN+)

thanks to the induction hypothesis. Now, for any i ∈ {1, . . . ,N − 1}, we have
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−�(�∂iu) + ∇(�∂iπ)

= �∂if + 2

�
x.∇∂iu +

(
N − 1

�
+ 1

�3

)
∂iu + 1

�
x∂iπ.

Thus, −�(�∂iu) + ∇(�∂iπ) ∈ W
m−1,p
m (RN+). Moreover,

div(�∂iu) = 1

�
x∂iu + �∂ih.

Thus, div(�∂iu) ∈ W
m,p
m (RN+). We also have γ0(�∂iu) = �′∂iγ0u = �′∂ig ∈ W

m+1−1/p,p
m (Γ ).

So, by induction hypothesis, we can deduce that

∀i ∈ {1, . . . ,N − 1}, (∂iu, ∂iπ) ∈ W
m+1,p

m+1

(
RN+

) × W
m,p

m+1

(
RN+

)
.

It remains to prove that (∂Nu, ∂Nπ) ∈ W
m+1,p

m+1 (RN+) × W
m,p

m+1(R
N+). For that, let us observe that

for any i ∈ {1, . . . ,N − 1}, we have

∂i∂Nu = ∂N∂iu ∈ W
m,p

m+1

(
RN+

)
,

∂2
Nui = −�′ui + ∂iπ − fi ∈ W

m,p

m+1

(
RN+

)
,

∂2
NuN = ∂Nh − ∂N div′ u′ ∈ W

m,p

m+1

(
RN+

)
,

∂Nπ = fN + �uN ∈ W
m,p

m+1

(
RN+

)
.

Hence, ∇(∂Nu) ∈ W
m,p

m+1(R
N+)

N
and knowing that ∂Nu ∈ W

m,p
m (RN+), we can deduce that ∂Nu ∈

W
m+1,p

m+1 (RN+), according to definition (2.1). Consequently, we have ∇u ∈ W
m+1,p

m+1 (RN+)
N

. Like-

wise, we have ∇π ∈ W
m,p

m+1(R
N+). Finally, we can conclude that (u,π) ∈ W

m+2,p

m+1 (RN+) ×
W

m+1,p

m+1 (RN+). �
Now, we examine the basic case � = −1, corresponding to f ∈ Lp(RN+). More precisely, we

have the following result, corresponding to Theorem 5.2:

Theorem 5.6. For any f ∈ Lp(RN+), h ∈ W
1,p

0 (RN+) and g ∈ W
2−1/p,p

0 (Γ ), problem (S+) ad-

mits a solution (u,π) ∈ W
2,p

0 (RN+) × W
1,p

0 (RN+), unique if N > p, unique up to an element of
(RxN)N−1 ×{0}×R if N � p, with the following estimate if N � p (eliminate (λ,μ) if N > p):

inf
(λ,μ)∈(RxN )N−1×{0}×R

(‖u + λ‖
W

2,p
0 (RN+ )

+ ‖π + μ‖
W

1,p
0 (RN+ )

)
� C

(‖f ‖Lp(RN+ ) + ‖h‖
W

1,p
0 (RN+ )

+ ‖g‖
W

2−1/p,p
0 (Γ )

)
.

Proof. The idea is to go back to the proof of Theorem 4.2 and we will throw light on the mod-
ifications. In contrast to Theorem 5.2, the extension f̃ of f is of no importance because there
is no orthogonality condition for the extended problem (S̃) (see Theorem 2.4). Then, we get
the reduced problem (S�). Now, to solve (S�), this is the proof of Proposition 4.1. Problem (P)
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yields a unique uN ∈ W
2,p

0 (RN+), problem (Q) gives π ∈ W
1,p

0 (RN+) unique up to an element

of N�[1−N/p]; and (R) yields u′ ∈ W
2,p

0 (RN+)
N−1

unique up to an element of (A�[2−N/p])
N−1

.
The point (3) of the proof is identical for all N and p (the kernels of the two Dirichlet problems
are always reduced to zero). The last point concerns the kernel of the operator associated to this
problem. If N > p, it is clearly reduced to zero and if N � p, we have A�[2−N/p] = RxN and

N�[1−N/p] =P[1−N/p] = R. �
Thanks to the corresponding imbeddings, we can give a regularity result with the same proof

as Corollary 5.5.

Corollary 5.7. Let m ∈ N. For any f ∈ W
m,p
m (RN+), h ∈ W

m+1,p
m (RN+) and g ∈ W

m+2−1/p,p
m (Γ ),

problem (S+) admits a solution (u,π) ∈ W
m+2,p
m (RN+)×W

m+1,p
m (RN+), unique if N > p, unique

up to an element of (RxN)N−1 × {0} × R if N � p, with the following estimate if N � p (elimi-
nate (λ,μ) if N > p):

inf
(λ,μ)∈(RxN )N−1×{0}×R

(‖u + λ‖
W

m+2,p
m (RN+ )

+ ‖π + μ‖
W

m+1,p
m (RN+ )

)
� C

(‖f ‖W
m,p
m (RN+ ) + ‖h‖

W
m+1,p
m (RN+ )

+ ‖g‖
W

m+2−1/p,p
m (Γ )

)
.

6. Very weak solutions for the Stokes system

The aim of this section is to study the Stokes problem with singular data on the boundary. For
that, we will adapt a method employed in bounded domains (see [2, Section 4.2]). At first, we
must give a meaning to singular data for the Stokes problem in the half-space. More precisely,
we want to show that a boundary condition of the form g ∈ W

−1/p,p

�−1 (Γ ) is meaningful. In mind

of this paper, we limit ourselves to the two cases � = 0 or � = 1, i.e. to g ∈ W
−1/p,p

−1 (Γ ) corre-

sponding to a solution (u,π) ∈ W
0,p

−1 (RN+)×W
−1,p

−1 (RN+), or g ∈ W
−1/p,p

0 (Γ ) corresponding to

(u,π) ∈ Lp(RN+) × W
−1,p

0 (RN+). In that way, for every � ∈ Z, we introduce the space

M�

(
RN+

) = {
u ∈ W

2,p′
−�+1

(
RN+

); u = 0 and divu = 0 on Γ
}
.

Lemma 6.1. For any � ∈ Z, we have the identity

M�

(
RN+

) = {
u ∈ W

2,p′
−�+1

(
RN+

); u = 0 and ∂NuN = 0 on Γ
}

(6.1)

and the range space of the normal derivative γ1 :M�(RN+) → W
1/p,p′
−�+1 (Γ ) is

Z�(Γ ) = {
w ∈ W

1/p,p′
−�+1 (Γ ); wN = 0 on Γ

}
. (6.2)

Proof. Let u ∈ W
2,p′
−�+1(R

N+) such that u = 0 on Γ . Then divu = ∂NuN on Γ and the identity
(6.1) holds.

Moreover, it is clear that Imγ1 ⊂ Z�(Γ ). Conversely, given w ∈ Z�(Γ ), by Lemma 2.2,

there exists u ∈ W
2,p′
−�+1(R

N+) such that u = 0 and ∂Nu = w on Γ . Since wN = 0 on Γ , we have
u ∈ M�(RN+) and w ∈ Imγ1. �
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For any open subset Ω of R, we also define the space

W
1,p′
−� (div;Ω) = {

v ∈ W
1,p′
−� (Ω); divv ∈ W

1,p′
−�+1(Ω)

}
,

which is a reflexive Banach space for the norm

‖v‖
W

1,p′
−� (div;Ω)

= ‖v‖
W

1,p′
−� (Ω)

+ ‖divv‖
W

1,p′
−�+1(Ω)

;

and the following subspace of W
1,p′
−� (div;RN+)

X�

(
RN+

) = {
v ∈ W̊

1,p′
−�

(
RN+

); divv ∈ W̊
1,p′
−�+1

(
RN+

)}
.

Lemma 6.2. For any � ∈ Z, the space D(RN+) is dense in X�(RN+).

Proof. Let v ∈ X�(RN+) and ṽ be the extension by 0 of v to RN , then we have ṽ ∈
W

1,p′
−� (div;RN).
We begin to apply the cut off functions φk , defined on RN for any k ∈ N, by

φk(x) =
{

φ( k
ln |x| ), if |x| > 1,

1, otherwise,

where φ ∈ C∞([0,∞[) is such that

φ(t) = 0, if t ∈ [0,1]; 0 � φ(t) � 1, if t ∈ [1,2]; φ(t) = 1, if t � 2.

Note that this truncation process is adapted to the logarithmic weights (see Lemma 7.1 in [3]).
Then we have

φk ṽ = ṽk →
k→∞ ṽ in W

1,p′
−�

(
RN

)
and

div(φk ṽ) = φk div ṽ + ṽ · ∇φk →
k→∞ div ṽ in W

1,p′
−�+1

(
RN

)
.

Now, for any real number θ > 0 and x ∈ RN , we set ṽk,θ (x) = ṽk(x − θeN). Then ṽk,θ ∈
W

1,p′
−� (div;RN) and supp ṽk,θ is compact in RN+ , moreover

lim
θ→0

ṽk,θ = ṽk in W
1,p′
−�

(
div;RN

)
.

Consequently, for any real number ε > 0 small enough, ρε ∗ ṽk,θ ∈ D(RN+) and

lim
ε→0

lim
θ→0

lim
k→∞ρε ∗ ṽk,θ = ṽ in W

1,p′
−�

(
div;RN

)
,

where ρε is a mollifier. �
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Let X′
�(R

N+) be the dual space of X�(RN+), we introduce the spaces

T �

(
RN+

) = {
v ∈ W

0,p

�−1

(
RN+

); �v ∈ X′
�

(
RN+

)}
,

T �,σ

(
RN+

) = {
v ∈ T �

(
RN+

); divv = 0 in RN+
}
,

which are reflexive Banach spaces for the norm

‖v‖T �(R
N+ ) = ‖v‖

W
0,p
�−1(R

N+ )
+ ‖�v‖X′

�(R
N+ ),

where ‖ · ‖X′
�(R

N+ ) denotes the dual norm of the space X′
�(R

N+).

Lemma 6.3. Let � ∈ Z. Under hypothesis (3.1), the space D(RN+) is dense in T �(RN+).

Proof. For every continuous linear form z ∈ (T �(RN+))′, there exists a unique pair (f ,g) ∈
W

0,p′
−�+1(R

N+) × X�(RN+), such that

∀v ∈ T �

(
RN+

)
, 〈z,v〉 =

∫
R

N+

f · v dx + 〈�v,g〉X′
�(R

N+ )×X�(R
N+ ). (6.3)

Thanks to the Hahn–Banach theorem, it suffices to show that any z which vanishes on D(RN+)

is actually zero on T �(RN+). Let us suppose that z = 0 on D(RN+), thus on D(RN+). Then we can
deduce from (6.3) that

f + �g = 0 in RN+ ,

hence we have �g ∈ W
0,p′
−�+1(R

N+), g ∈ W̊
1,p′
−� (RN+) and divg ∈ W̊

1,p′
−�+1(R

N+). Let f̃ ∈
W

0,p′
−�+1(R

N) and g̃ ∈ W
1,p′
−� (RN) be respectively the extensions by 0 of f and g to RN . From

(6.3), we get f̃ + �g̃ = 0 in RN , and thus �g̃ ∈ W
0,p′
−�+1(R

N). Now, according to the isomor-

phism results for � in RN (see [4]), we can deduce that g̃ ∈ W
2,p′
−�+1(R

N), under hypothesis

(3.1). Since g̃ is an extension by 0, it follows that g = W̊
2,p′
−�+1(R

N+). Then, by density of D(RN+)

in W̊
2,p′
−�+1(R

N+), there exists a sequence (ϕk)k∈N ⊂ D(RN+) such that ϕk → g in W
2,p′
−�+1(R

N+).
Thus, for any v ∈ T �(RN+), we have

〈z,v〉 = −
∫

R
N+

v · �g dx + 〈�v,g〉X′
�(R

N+ )×X�(R
N+ )

= lim
k→∞

{
−

∫
R

N+

v · �ϕk dx + 〈�v,ϕk〉D′(RN+ )×D(RN+ )

}

= 0,

i.e. z is identically zero. �
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We also can show that, under hypothesis (3.1), {v ∈ D(RN+); divv = 0} is dense in T �,σ (RN+).
To study the traces of functions which belong to T �,σ (RN+), we set

W
0,p

�

(
div;RN+

) = {
v ∈ W

0,p

�−1

(
RN+

);divv ∈ W
0,p

�

(
RN+

)}
and their normal traces are described in the following lemma:

Lemma 6.4. Assume that � ∈ Z with N/p′ �= �. The linear mapping

γeN
:D

(
RN+

) −→D(
RN−1),

v �−→ vN |Γ

can be extended to a linear continuous mapping

γeN
:W 0,p

�

(
div;RN+

) −→ W
−1/p,p

�−1 (Γ ).

Moreover, we have the Green formula

∀v ∈ W
0,p

�

(
div;RN+

)
, ∀ϕ ∈ W

1,p′
−�+1

(
RN+

)
,∫

R
N+

v · ∇ϕ dx +
∫

R
N+

ϕ divv dx = −〈vN,ϕ〉
W

−1/p,p
�−1 (Γ )×W

1/p,p′
−�+1 (Γ )

. (6.4)

Proof. Note that the assumption N/p′ �= � is necessary for the imbedding W
1,p′
−�+1(R

N+) ↪→
W

0,p′
−� (RN+), which is underlying in the Green formula. We will show in remark how to do with-

out.
Here again, we can show by truncation and regularization that D(RN+) is dense in

W
0,p

� (div;RN+) as in [3].

Let v ∈ D(RN+) and ϕ ∈ D(RN+), then formula (6.4) obviously holds. Since D(RN+) is dense

in W
1,p′
−�+1(R

N+) and the mapping

γ0 :W 1,p′
−�+1

(
RN+

) −→ W
1/p,p′
−�+1 (Γ ),

ϕ �−→ ϕ|Γ

is continuous, formula (6.4) holds for every v ∈ D(RN+) and ϕ ∈ W
1,p′
−�+1(R

N+). By Lemma 2.2, for

every μ ∈ W
1/p,p′
−�+1 (Γ ), there exists ϕ ∈ W

1,p′
−�+1(R

N+) such that ϕ = μ on Γ , with ‖ϕ‖
W

1,p′
−�+1(R

N+ )
�

C‖μ‖
W

1/p,p′
−�+1 (Γ )

. Consequently,

∣∣〈vN,μ〉
W

−1/p,p
(Γ )×W

1/p,p′
(Γ )

∣∣ � C‖v‖
W

0,p
(div;RN)

‖μ‖
W

1/p,p′
(Γ )

.

�−1 −�+1 � + −�+1
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Thus

‖vN‖
W

−1/p,p
�−1 (Γ )

� C‖v‖
W

0,p
� (div;RN+ )

.

We can deduce that the linear mapping γeN
is continuous for the norm of W

0,p

� (div;RN+).

Since D(RN+) is dense in W
0,p
� (div;RN+), γeN

can be extended by continuity to γeN
∈

L(W
0,p

� (div;RN+);W−1/p,p

�−1 (Γ )) and formula (6.4) holds for all v ∈ W
0,p

� (div;RN+) and ϕ ∈
W

1,p′
−�+1(R

N+). �
Remark 6.5. If N/p′ = �, the imbedding W

1,p′
−�+1(R

N+) ↪→ W
0,p′
−� (RN+) fails, but in that case we

have W
1,p′
−�+1(R

N+) ↪→ W
0,p′
−�,−1(R

N+). Thus, it suffices to introduce the space W
0,p

�,1 (div;RN+) =
{v ∈ W

0,p

�−1(R
N+);divv ∈ W

0,p

�,1 (RN+)} instead of W
0,p
� (div;RN+). Then, with the same proof, we

can show that D(RN+) is dense in the space W
0,p

�,1 (div;RN+) and that the mapping γeN
is continu-

ous from W
0,p

�,1 (div;RN+) to W
−1/p,p

�−1 (Γ ), with the corresponding Green formula.

It follows that the functions v from T �,σ (RN+) are such that their normal trace vN belongs to

W
−1/p,p

�−1 (Γ ). Furthermore, for any v ∈ D(RN+) we have the following Green formula:

∀ϕ ∈ M�

(
RN+

)
,

∫
R

N+

�v · ϕ dx =
∫

R
N+

v · �ϕ dx +
∫
Γ

v · ∂Nϕ dx′.

Let us now observe that the dual space Z′
�(Γ ) of Z�(Γ ) can be identified with the space{

g ∈ W
−1/p,p

�−1 (Γ ); gN = 0 on Γ
}
,

and moreover that ∂Nϕ sweeps Z�(Γ ) when ϕ sweeps M�(RN+). Thus, thanks to the density of

D(RN+) in T �(RN+), we can prove that the tangential trace of functions from T �,σ (RN+) belongs

to W
−1/p,p

�−1 (Γ ). So, their complete trace belongs to W
−1/p,p

�−1 (Γ ) and we have

∀ϕ ∈ M�

(
RN+

)
, ∀v ∈ T �,σ

(
RN+

)
,

〈�v,ϕ〉X′
�×X�

= 〈v,�ϕ〉
W

0,p
�−1×W

0,p′
−�+1

+ 〈v, ∂Nϕ〉
W

−1/p,p
�−1 ×W

1/p,p′
−�+1

. (6.5)

Remark. Here again, if N/p′ = �, we must add a logarithmic factor in the definition of X�(RN+)

to have the good imbedding.

We now can solve the homogeneous Stokes problem with singular boundary conditions. We
will give separately the results for � = 0 and � = 1. The proofs are quite similar and we will
just detail the first case. The following proposition and corollary yield the existence of very
weak solutions when the data are singular, so extending Proposition 4.1. Note that W

1,p

0 (RN+) ↪→
W

0,p
(RN+) and W

1−1/p,p
(Γ ) ↪→ W

−1/p,p
(Γ ) if N �= p.
−1 0 −1
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Proposition 6.6. Assume that N
p

�= 1. For any g ∈ W
−1/p,p

−1 (Γ ) such that gN = 0, the Stokes

problem (4.1)–(4.3) has a unique solution (u,π) ∈ W
0,p

−1 (RN+) × W
−1,p

−1 (RN+), with the estimate

‖u‖
W

0,p
−1 (RN+ )

+ ‖π‖
W

−1,p
−1 (RN+ )

� C‖g‖
W

−1/p,p
−1 (Γ )

.

Proof. (1) We will first show that if the pair (u,π) ∈ W
0,p

−1 (RN+) × W
−1,p

−1 (RN+) satisfies (4.1)
and (4.2), then we have u ∈ T 0,σ (RN+) and thus the boundary condition (4.3) makes sense. With

this aim, thanks to Lemma 6.2, observe that if π ∈ W
−1,p

−1 (RN+), then we have ∇π ∈ X′
0(R

N+)

and

‖∇π‖X′
0(R

N+ ) � C‖π‖
W

−1,p
−1 (RN+ )

.

So, we have �u ∈ X′
0(R

N+) and the trace γ0u ∈ W
−1/p,p

−1 (Γ ).
(2) Let us show that the problem (4.1)–(4.3) with gN = 0 is equivalent to the variational

formulation: Find (u,π) ∈ W
0,p

−1 (RN+) × W
−1,p

−1 (RN+) such that

∀v ∈ M0
(
RN+

)
, ∀ϑ ∈ W

1,p′
1

(
RN+

)
,

〈u,−�v + ∇ϑ〉
W

0,p
−1 (RN+ )×W

0,p′
1 (RN+ )

− 〈π,divv〉
W

−1,p
−1 (RN+ )×W̊

1,p′
1 (RN+ )

= 〈g, ∂Nv〉
W

−1/p,p
−1 (Γ )×W

1/p,p′
1 (Γ )

. (6.6)

Indeed, let (u,π) be a solution to (4.1)–(4.3) with gN = 0; then the Green formula (6.5) yields
for all v ∈ M0(RN+),

〈−�u + ∇π,v〉X′
0×X0

= −〈u,�v〉
W

0,p
−1 (RN+ )×W

0,p′
1 (RN+ )

− 〈g, ∂Nv〉
W

−1/p,p
−1 (Γ )×W

1/p,p′
1 (Γ )

− 〈π,divv〉
W

−1,p
−1 (RN+ )×W̊

1,p′
1 (RN+ )

= 0.

Moreover, using the density of the functions of D(RN+) with divergence zero in T 0,σ (RN+), we

obtain for all ϑ ∈ W
1,p′
1 (RN+),

〈u,∇ϑ〉
W

0,p
−1 (RN+ )×W

0,p′
1 (RN+ )

= −〈divu, ϑ〉
Lp(RN+ )×Lp′

(RN+ )

− 〈uN,ϑ〉
W

−1/p,p
−1 (Γ )×W

1/p,p′
1 (Γ )

= 0.

So we show that (u,π) satisfies the variational formulation (6.6). Conversely, we can readily
prove that if (u,π) ∈ W

0,p

−1 (RN+) × W
−1,p

−1 (RN+) satisfies the variational formulation (6.6), then
(u,π) is a solution to problem (4.1)–(4.3).

(3) Let us solve problem (6.6). According to Theorem 5.2, we know that if N
p

�= 1, for all

f ∈ W
0,p′
1 (RN+) and ϕ ∈ W̊

1,p′
1 (RN+), there exists a unique (v, ϑ) ∈ M0(RN+) × W

1,p′
1 (RN+) solu-

tion to

−�v + ∇ϑ = f and divv = ϕ in RN+ , v = 0 on Γ,
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with the estimate

‖v‖
W

2,p′
1 (RN+ )

+ ‖ϑ‖
W

1,p′
1 (RN+ )

� C
(‖f ‖

W
0,p′
1 (RN+ )

+ ‖ϕ‖
W

1,p′
1 (RN+ )

)
.

Then ∣∣〈g, ∂Nv〉
W

−1/p,p
−1 (Γ )×W

1/p,p′
1 (Γ )

∣∣ � C‖g‖
W

−1/p,p
−1 (Γ )

‖v‖
W

2,p′
1 (RN+ )

� C‖g‖
W

−1/p,p

−1

(‖f ‖
W

0,p′
1

+ ‖ϕ‖
W

1,p′
1

)
.

In other words, we can say that the linear mapping

T : (f , ϕ) �−→ 〈g, ∂Nv〉

is continuous on W
0,p′
1 (RN+) × W̊

1,p′
1 (RN+), and according to the Riesz representation theorem,

there exists a unique (u,π) ∈ W
0,p

−1 (RN+)×W
−1,p

−1 (RN+) which is the dual space of W
0,p′
1 (RN+)×

W̊
1,p′
1 (RN+), such that

∀(f , ϕ) ∈ W
0,p′
1

(
RN+

) × W̊
1,p′
1

(
RN+

)
,

T (f , ϕ) = 〈u,f 〉
W

0,p
−1 (RN+ )×W

0,p′
1 (RN+ )

+ 〈π,−ϕ〉
W

−1,p
−1 (RN+ )×W̊

1,p′
1 (RN+ )

,

i.e. the pair (u,π) satisfies (6.6). �
We now can drop the hypothesis gN = 0.

Theorem 6.7. Assume that N
p

�= 1. For any g ∈ W
−1/p,p

−1 (Γ ), the Stokes problem (4.1)–(4.3) has

a unique solution (u,π) ∈ W
0,p

−1 (RN+) × W
−1,p

−1 (RN+), with the estimate

‖u‖
W

0,p
−1 (RN+ )

+ ‖π‖
W

−1,p
−1 (RN+ )

� C‖g‖
W

−1/p,p
−1 (Γ )

.

Proof. According to Theorem 3.4, if N
p

�= 1, then there exists ψ ∈ W
1,p

−1 (RN+) unique up to an

element of N�[2−N/p] solution to the following Neumann problem:

�ψ = 0 in RN+ , ∂Nψ = gN on Γ.

Let us set w = ∇ψ and g∗ = g − γ0w. Then w ∈ T 0,σ (RN+) and

‖w‖T 0(R
N+ ) = ‖w‖

W
0,p
−1 (RN+ )

� C‖g‖
W

−1/p,p
−1 (Γ )

.

Furthermore, g∗ satisfies the hypotheses of Proposition 6.6, hence the existence of a unique pair
(z,π) which satisfies

−�z + ∇π = 0 and divz = 0 in RN+ , z = g∗ on Γ.
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Then the pair (z +w,π) is the required solution. The uniqueness of this solution is a straightfor-
ward consequence of Proposition 6.6. �

Here is the corresponding results for the case � = 1.

Proposition 6.8. For any g ∈ W
−1/p,p

0 (Γ ) such that gN = 0, and g′ ⊥ RN−1 if N � p′, the

Stokes problem (4.1)–(4.3) has a unique solution (u,π) ∈ Lp(RN+) × W
−1,p

0 (RN+), with the esti-
mate

‖u‖Lp(RN+ ) + ‖π‖
W

−1,p
0 (RN+ )

� C‖g‖
W

−1/p,p
0 (Γ )

.

Proof. The two differences from the weight � = 0 are the absence of critical value (the reason
is that here the dual problem solved by Theorem 5.6 has no critical value), and the orthogonality
condition in the case N � p′ (which corresponds by duality to the non-zero kernel in Theorem
5.6 if N � p). The rest of the proof is similar. �
Theorem 6.9. For any g ∈ W

−1/p,p

0 (Γ ) such that g ⊥ RN if N � p′, the Stokes problem (4.1)–

(4.3) has a unique solution (u,π) ∈ Lp(RN+) × W
−1,p

0 (RN+), with the estimate

‖u‖Lp(RN+ ) + ‖π‖
W

−1,p
0 (RN+ )

� C‖g‖
W

−1/p,p
0 (Γ )

.

Remark 6.10. Let p > 1 be a real number. If p < N and r = Np/(N − p), then we have
W

1−1/p,p

0 (Γ ) ↪→ W
−1/r,r

0 (Γ ). Indeed, for every g ∈ W
1−1/p,p

0 (Γ ), there exists u ∈ W
2,p

0 (RN+)

such that

�u = 0 in RN+ , ∂Nu = g on Γ

(see [6, Corollary 3.3]). Since we have the imbedding W
2,p

0 (RN+) ↪→ W
1,r
0 (RN+), we can de-

duce that v = ∇u ∈ Lr (RN+) and divv = 0 ∈ W
0,r
1 (RN+), i.e. v ∈ W

0,p

1 (div;RN+). Moreover,

as r ′ �= N , according to Lemma 6.4, we get γeN
v = ∂Nu|Γ = g ∈ W

−1/r,r

0 (Γ ). Consequently,

if g ∈ W
1−1/p,p

0 (Γ ) ↪→ W
−1/r,r

0 (Γ ), Proposition 4.1 and Theorem 6.9 respectively yield the

unique solutions (u,π) ∈ W
1,p

0 (RN+) × Lp(RN+) and (v, ϑ) ∈ Lr (RN+) × W
−1,r
0 (RN+), which are

identical thanks to the Sobolev imbeddings W
1,p

0 (RN+) ↪→ Lr(RN+) and Lp(RN+) ↪→ W
−1,r
0 (RN+).
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FROM STRONG TO VERY WEAK SOLUTIONS TO THE STOKES
SYSTEM WITH NAVIER BOUNDARY CONDITIONS IN THE

HALF-SPACE∗

CHÉRIF AMROUCHE†, ŠÁRKA NEČASOVÁ‡ , AND YVES RAUDIN†

Abstract. We consider the Stokes problem with slip-type boundary conditions in the half-
space Rn

+, with n � 2. The weighted Sobolev spaces yield the functional framework. We first
study generalized and strong solutions and then the case with very low regularity of data on the
boundary. We apply the method of decomposition introduced in our previous work [J. Differential
Equations, 244 (2008), pp. 887–915] where it is necessary to solve particular problems for harmonic
and biharmonic operators with very weak data. We also envisage a wide class of behaviors at infinity
for data and solutions.

Key words. Stokes problem, half-space, weighted Sobolev spaces
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1. Introduction and preliminaries. The motion of a viscous incompressible
fluid is described by the Navier–Stokes equations, which are nonlinear. The Stokes
system is a linear approximation of this model, available for slow motions. For the
stationary Stokes problem

−Δu+∇π = f and divu = h in Ω,

where Ω is a domain of Rn, there are several possible boundary conditions. Under
the hypothesis of impermeability of the boundary, the velocity field u satisfies

(1.1) u · n = 0 on ∂Ω,

where n stands for the outer normal vector. According to the idea that the fluid
cannot slip on the wall due to its viscosity, we get the no-slip condition

(1.2) uτ = 0 on ∂Ω,

where uτ = u − (u · n)n denotes, as usual, the tangential component of u. The
Dirichlet boundary value problem, which was suggested by Stokes, is the combination
of (1.1) and (1.2). Concerning this problem, the literature is well known and exten-
sive. Especially in the case of the half-space, we would like to mention the works of
Cattabriga [11], Tanaka [25], Farwig and Sohr [14], and Galdi [15], where the solution
of the problem is investigated in homogeneous Sobolev spaces, whereas in the works of
Maz’ya, Plamenevskĭı, and Stupyalis [21] and Boulmezaoud [10], we can find results
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in weighted Sobolev spaces. This is also the functional framework of our previous
work (see [7]).

The correctness of the no-slip hypothesis has been a subject of discussion for
over two centuries among many distinguished scientists. Instead of (1.2), Navier had
already proposed the following condition saying that the velocity on the boundary is
proportional to the tangential component of the stress:

(1.3) (T · n)τ + β uτ = 0 on ∂Ω,

where T denotes the viscous stress tensor and β is a friction coefficient. For the
incompressible isotropic fluids, the viscous stress tensor is given by

T = −π I+ ν (∇u +∇uT ).

The case β = 0 is termed complete slip, while (1.3) reduces to (1.2) in the asymptotic
limit β → ∞.

Recent developments in micro- and nanofluidic technologies have renewed inter-
est in the influence of surface roughness on the slip behavior of viscous fluids (see
Priezjev and Troian [23]). Intuitively much closer to the observed reality, the Navier
slip conditions have been often replaced by (1.2), as the slip length is likely to be too
small to influence the motion on the macroscopic scale. However, numerous exper-
iments and simulations, as well as theoretical studies, have shown that the classical
no-slip assumption can fail when the walls are sufficiently smooth (see Einzel, Panzer,
and Liu [12], Lauga, Brenner, and Stone [20], Priezjev, Darhuber, and Troian [22],
Qian, Wang, and Sheng [24], and Zhu and Granick [27]). Strictly speaking, the slip
length characterizing the contact between a fluid and a solid wall in relative motion
is influenced by many different factors, among which the intrinsic affinity and com-
mensurability between the liquid and solid molecular size, as well as the macroscopic
surface roughness caused by imperfections and tiny asperities, play a significant role.
Navier’s boundary conditions have been considered by many authors. Let us quote
Jäger and Mikelić [18] and Zaja̧czkowski [26]. In the three-dimensional case, we can
find other boundary conditions in the work of Ladyzhenskaya and Solonnikov [19] and
intensively studied by Babin, Mahalov, and Nicolaenko [8, 9]. These conditions can
be expressed by (1.1) combined with the equations

(1.4) curlu× n = 0.

In the half-space Rn+, where n = (0, . . . , 0, −1), Navier’s conditions (1.1) and (1.3)
with β = 0 can be written as

un = 0, ∂nu
′ = 0 on Γ = ∂Rn+.

Let us remark that in the case of R3
+, we would get the same boundary conditions

from (1.1) and (1.4).
The aim of this paper is to investigate the Stokes problem in the half-space with

the following type of slip boundary conditions:

(S�)

{ −Δu+∇π = f and divu = h in R
n
+,

un = gn and ∂nu
′ = g′ on Γ.

This paper is organized as follows. The second part of this section is devoted to
notation, functional setting, and useful results. In section 2, we establish the existence
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of generalized solutions in the central case of weight zero. In section 3, we extend
this result to a wide class of weights, and we also deal with strong solutions. Last, in
section 4, we are interested in the case of very low regularity at the boundary which
yields very weak solutions.

For any real number p > 1, we always take p′ to be the Hölder conjugate of p,
that is, 1

p + 1
p′ = 1.

For any integer n � 2, writing a typical point x ∈ Rn as x = (x′, xn), we denote
by Rn+ the upper half-space of Rn and by Γ ≡ Rn−1 its boundary. We will use the

two basic weights � = (1 + |x|2)1/2 and lg � = ln(2 + |x|2), where |x| is the Euclidean
norm of x.

For any integer q, Pq stands for the space of polynomials of degree smaller than or

equal to q; PΔ
q (resp., PΔ2

q ) is the subspace of harmonic (resp., biharmonic) polyno-

mials of Pq; AΔ
q (resp., NΔ

q ) is the subspace of polynomials of PΔ
q , odd (resp., even)

with respect to xn, or equivalently, which satisfy the condition ϕ(x′, 0) = 0 (resp.,
∂nϕ(x

′, 0) = 0), with the convention that these spaces are reduced to {0} if q < 0.
For any real number s, we denote by [s] the integer part of s.

Given a Banach space B, with dual space B′ and a closed subspace X of B, we
denote by B′ ⊥ X the subspace of B′ orthogonal to X . For any k ∈ Z, we will denote
by {1, . . . , k} the set of the first k positive integers, with the convention that this set
is empty if k is nonpositive.

Throughout this paper, bold characters are used for the vector fields; depending
on the context, f ∈ X stands for f = (f1, . . . , fn) ∈ X = Xn, and g′ ∈ X stands
for g′ = (g1, . . . , gn−1) ∈ X = Xn−1.

For weighted Sobolev spaces, we refer the reader to Hanouzet’s classic article [17]
and especially to [2] for logarithmic weights. Let Ω be an open set of Rn. For any
m ∈ N, p ∈ ]1, ∞[, (α, β) ∈ R2, we define the following space:

Wm, p
α, β (Ω) =

{
u ∈ D′(Ω); 0 � |λ| � k, �α−m+|λ| (lg �)β−1 ∂λu ∈ Lp(Ω);

k + 1 � |λ| � m, �α−m+|λ| (lg �)β ∂λu ∈ Lp(Ω)
}
,

(1.5)

where k = m− n/p− α if n/p+ α ∈ {1, . . . ,m}, and k = −1 otherwise. In the case
β = 0, we simply denote the space by Wm, p

α (Ω). Note that Wm, p
α, β (Ω) is a reflexive

Banach space equipped with its natural norm:

‖u‖Wm, p
α, β (Ω) =

( ∑
0�|λ|�k

‖�α−m+|λ| (lg �)β−1 ∂λu‖pLp(Ω)

+
∑

k+1�|λ|�m
‖�α−m+|λ| (lg �)β ∂λu‖pLp(Ω)

)1/p

.

We also define the seminorm:

|u|Wm, p
α, β

(Ω) =

( ∑
|λ|=m

‖�α (lg �)β ∂λu‖pLp(Ω)

)1/p

.

The weights in definition (1.5) are chosen so that D(Rn+) is dense in Wm, p
α, β (Rn+)

and so that the following Poincaré-type inequality holds in Wm, p
α, β (Rn+) (see [3]): Let
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q∗ = inf(q,m − 1), where q is the highest degree of the polynomials contained in
Wm, p
α, β (Rn+). If n/p+ α /∈ {1, . . . ,m} or (β − 1)p 	= −1, then

∀u ∈Wm, p
α, β (Rn+), ‖u‖Wm, p

α, β (Rn
+)/Pq∗

� C |u|Wm, p
α, β (Rn

+),

and

∀u ∈ ◦
W
m, p
α, β (R

n
+) = D(Rn+)

‖·‖W
m, p
α, β

(Rn
+

)
, ‖u‖Wm, p

α, β (Rn
+) � C |u|Wm, p

α, β (Rn
+).

We denote by W−m, p′
−α,−β(R

n
+) the dual space of

◦
W

m,p
α, β (R

n
+), and we notice that it is a

space of distributions. If n/p+ α /∈ {1, . . . ,m}, we have the imbeddings

Wm, p
α, β (Rn+) ↪→Wm−1, p

α−1, β (Rn+) ↪→ · · · ↪→W 0, p
α−m, β(R

n
+).

If n/p+ α = j ∈ {1, . . . ,m}, then we have

Wm, p
α, β ↪→ · · · ↪→Wm−j+1, p

α−j+1, β ↪→Wm−j, p
α−j, β−1 ↪→ · · · ↪→ W 0, p

α−m,β−1.

In order to define the traces of functions of Wm, p
α (Rn+) (here we do not consider

the case β 	= 0), for any σ ∈ ]0, 1[, we introduce the space

W σ, p
α (Rn) =

{
u ∈ D′(Rn); wα−σu ∈ Lp(Rn),∫

Rn×Rn

|�α(x)u(x) − �α(y)u(y)|p
|x− y|n+σp dxdy <∞

}
,

where w = � if n/p+ α 	= σ and w = � (lg �)1/(σ−α) if n/p+ α = σ. For any s ∈ R+,
we set

W s, p
α (Rn) =

{
u ∈ D′(Rn); 0 � |λ| � k, �α−s+|λ| (lg �)−1 ∂λu ∈ Lp(Rn);

k + 1 � |λ| � [s]− 1, �α−s+|λ| ∂λu ∈ Lp(Rn); ∂[s]u ∈ W σ, p
α (Rn)

}
,

where k = s − n/p − α if n/p + α ∈ {σ, . . . , σ + [s]}, with σ = s − [s] and k = −1
otherwise. In the same way, we define, for any real number β, the space W s, p

α, β(R
n) ={

v ∈ D′(Rn); (lg �)β v ∈ W s, p
α (Rn)

}
. These two spaces are reflexive Banach spaces

equipped with their natural norms. If n/p + α /∈ {σ, . . . , σ + [s] − 1}, we have the
imbeddings

W s, p
α, β(R

n) ↪→W s−1, p
α−1, β(R

n) ↪→ · · · ↪→W σ, p
α−[s], β(R

n),

W s, p
α, β(R

n) ↪→ W
[s], p
α+[s]−s, β(R

n) ↪→ · · · ↪→W 0, p
α−s, β(R

n).

If n/p+ α = j ∈ {σ, . . . , σ + [s]− 1}, then we have

W s, p
α, β ↪→ · · · ↪→W s−j+1, p

α−j+1, β ↪→W s−j, p
α−j, β−1 ↪→ · · · ↪→W σ, p

α−[s], β−1,

W s, p
α, β ↪→ W

[s], p
α+[s]−s, β ↪→ · · · ↪→W

[s]−j+1, p
α−σ−j+1, β ↪→W

[s]−j, p
α−σ−j, β−1 ↪→ · · · ↪→W 0, p

α−s, β−1.

If u is a function on Rn+, we denote its trace of order j on the hyperplane Γ by

∀j ∈ N, γju : x′ ∈ R
n−1 �−→ ∂jnu(x

′, 0).
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Let us recall the following trace lemma due to Hanouzet (see [17]) and extended by
Amrouche and Nečasová (see [3]) to the critical values with logarithmic weights.

Lemma 1.1 (the trace lemma). For any integer m � 1 and real number α, we
have the linear continuous mapping

γ = (γ0, γ1, . . . , γm−1) : W
m, p
α (Rn+) −→

m−1∏
j=0

Wm−j−1/p, p
α (Rn−1).

Moreover, γ is surjective and Kerγ =
◦
Wm, p
α (Rn+).

On the Stokes problem in R
n,

(S) −Δu+∇π = f and divu = h in R
n,

let us recall the fundamental results on which the text to follow is based. First, for
any k ∈ Z, we introduce the space

Sk =
{
(λ, μ) ∈ Pk × PΔ

k−1; divλ = 0, −Δλ+∇μ = 0
}
.

Theorem 1.2 (see Alliot and Amrouche [1]). Let  ∈ Z, and assume that

(1.6) n/p′ /∈ {1, . . . , } and n/p /∈ {1, . . . ,−}.
For any (f , h) ∈ (

W−1, p
� (Rn) × W 0, p

� (Rn)
) ⊥ S[1+�−n/p′], problem (S) admits a

solution (u, π) ∈ W 1, p
� (Rn)×W 0, p

� (Rn), unique up to an element of S[1−�−n/p], with
the estimate

inf
(λ, μ)∈S[1−�−n/p]

(
‖u+ λ‖W 1, p

�
(Rn) + ‖π + μ‖W 0, p

�
(Rn)

)
� C

(
‖f‖W−1, p

� (Rn) + ‖h‖W 0, p
� (Rn)

)
.

Theorem 1.3 (see Alliot and Amrouche [1]). Let  ∈ Z and m � 1 be two
integers, and assume that

(1.7) n/p′ /∈ {1, . . . , + 1} and n/p /∈ {1, . . . ,−−m}.
For any (f , h) ∈ (Wm−1, p

m+� (Rn) ×Wm, p
m+�(R

n)
) ⊥ S[1+�−n/p′], problem (S) admits a

solution (u, π) ∈ Wm+1, p
m+� (Rn)×Wm, p

m+�(R
n), unique up to an element of S[1−�−n/p],

with the estimate

inf
(λ, μ)∈S[1−�−n/p]

(
‖u+ λ‖Wm+1, p

m+�
(Rn) + ‖π + μ‖Wm, p

m+�(R
n)

)
� C

(
‖f‖Wm−1, p

m+� (Rn) + ‖h‖Wm, p
m+�(R

n)

)
.

2. Generalized solutions for the weight zero. In this section, we will con-
centrate on the central case of weight zero—that is, solutions (u, π) which belong to
W 1, p

0 (Rn+) × Lp(Rn+). This restriction allows us to avoid the question of kernel and,
above all, of compatibility conditions for the data. However, in the next section, we
will rest on this construction to envisage a wide class of weights.

First, we will establish the result about the generalized solutions to (S�) in the
homogeneous case. The method is similar to the one employed for the Dirichlet
conditions (see [7]), but the auxiliary problems and the arguments for their resolution
are appreciably different.
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2.1. The homogeneous case. Here, we assume that f = 0 and h = 0.

Proposition 2.1. For any gn ∈ W
1−1/p, p
0 (Γ) and g′ ∈ W

−1/p, p
0 (Γ) such that

g′ ⊥ Rn−1 if n � p′, the Stokes problem

−Δu+∇π = 0 in R
n
+,(2.1a)

divu = 0 in R
n
+,(2.1b)

un = gn on Γ,(2.1c)

∂nu
′ = g′ on Γ(2.1d)

has a solution (u, π) ∈ W 1, p
0 (Rn+)×Lp(Rn+), unique if n > p, unique up to an element

of Rn−1 × {0}2 if n � p, with the estimate

inf
ξ∈Rn−1×{0}

‖u+ ξ‖W 1, p
0 (Rn

+) + ‖π‖Lp(Rn
+)

� C
(
‖gn‖W 1−1/p, p

0 (Γ)
+ ‖g′‖

W
−1/p, p
0 (Γ)

)
if n � p, and the corresponding estimate without inf (ξ = 0) if n > p.

Remark 2.2. Before giving the proof, let us notice that this problem is not
standard. Indeed, we find the velocity field u in W 1, p

0 (Rn+) with a boundary condition

∂nu
′ = g′ ∈ W

−1/p, p
0 (Γ) for its tangential components.

Such a velocity field is possible because Δ2u = 0 in Rn+, and then, we find an ad
hoc space in which we can give a meaning (see [6, Lemma 4.8]) to the trace of ∂nu

′

precisely in the space W
−1/p, p
0 (Γ).

Proof. (i) First, we reduce system (2.1) to three problems on the fundamental
operators Δ2 and Δ.

According to (2.1b) and applying the operators div and Δ to (2.1a), we get both
Δπ = 0 and Δ2u = 0 in Rn+.

From the boundary condition (2.1c), we take out

∀i ∈ {1, 2, . . . , n− 1}, ∂2i un = ∂2i gn on Γ.

In addition, from (2.1d), we take out

∂2nun = ∂n(∂nun) = ∂n(− div′ u′) = − div′ g′ on Γ,

and hence, the boundary condition

Δun = Δ′gn − div′ g′ on Γ,

where Δ′ =
∑n−1

j=1 ∂
2
j . So, we get the biharmonic problem

(B) Δ2un = 0 in R
n
+, un = gn, and Δun = Δ′gn − div′ g′ on Γ.

Moreover, we have two Neumann problems,

(N1) Δπ = 0 in R
n
+, ∂nπ = Δun on Γ,

(N2) Δu′ = ∇′π in R
n
+, ∂nu

′ = g′ on Γ.

(ii) Now, we will solve these three problems.
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Step 1. We deal with problem (B). Denoting zn = Δun, we can split our problem
into the following two Dirichlet problems:

Δzn = 0 in R
n
+, zn = Δ′gn − div′ g′ on Γ,(2.2)

Δun = zn in R
n
+, un = gn on Γ.(2.3)

Concerning (2.2), we notice that Δ′gn−div′ g′ ∈W
−1−1/p, p
0 (Γ), and then we can

apply the result on the singular boundary conditions for the homogeneous Dirichlet
problem (see [7, Theorem 3.5]), provided the following orthogonality condition is
satisfied:

∀ϕ ∈ AΔ
[3−n/p′],

〈
Δ′gn − div′ g′, ∂nϕ

〉
W

−1−1/p, p
0 (Γ)×W 2−1/p′, p′

0 (Γ)
= 0.

According to the degree of polynomials in AΔ
[3−n/p′], this condition reduces to g′ ⊥

P [1−n/p′], which is precisely the assumption of Proposition 2.1. Thus problem (2.2)

has a unique solution zn ∈W−1, p
0 (Rn+).

Concerning (2.3), we can apply the result on the generalized solutions to the
Dirichlet problem (see [3, Theorem 3.1]) without any condition since AΔ

[1−n/p′] = {0}.
Thus problem (2.3) has a unique solution un ∈W 1, p

0 (Rn+).

Step 2. Next, we study problem (N1). Since Δun ∈ W−1, p
0 (Rn+), it is necessary

to check that the trace of Δun has meaning. We have both Δun ∈ W−1, p
0 (Rn+) and

Δ2un = 0, and then it follows that Δun ∈W
−1−1/p, p
0 (Γ) (see [7, Lemma 3.7]). Next,

the result on the singular boundary conditions for the homogeneous Neumann problem
(see [4] or [7, Theorem 3.3]) holds, provided the following orthogonality condition is
satisfied:

∀ϕ ∈ NΔ
[2−n/p′], 〈Δun, ϕ〉W−1−1/p, p

0 (Γ)×W 2−1/p′, p′
0 (Γ)

= 0.

But, according to the degree of polynomials in NΔ
[2−n/p′], it is clear that this condition

is always satisfied. It implies the existence of a unique solution π ∈ Lp(Rn+) to problem
(N1).

Step 3. Finally, we are dealing with problem (N2). We split it into two parts:

(2.4) Δv′ = ∇′π in R
n
+, ∂nv

′ = 0 on Γ,

and

(2.5) Δz′ = 0 in R
n
+, ∂nz

′ = g′ on Γ.

To solve (2.4), we introduce the auxiliary problem

(2.6) Δw = π in R
n
+, ∂nw = 0 on Γ.

Since we have π ∈ Lp(Rn+), problem (2.6) has a solution w ∈ W 2, p
0 (Rn+), unique up

to an element of NΔ
[2−n/p] (see [4]). Next, it suffices to put v′ = ∇′w to obtain a

(nonunique) solution v′ ∈ W 1, p
0 (Rn+) to problem (2.4).

For problem (2.5), with g′ ∈ W
−1/p, p
0 (Γ), we must use an intermediate result for

the Neumann problem (see [7, Theorem 3.4]). With this weight, the compatibility
condition is g′ ⊥ P [1−n/p′]. Thus it is realized by the assumption of Proposition 2.1.

So, this problem has a solution z′ ∈ W 1, p
0 (Rn+), unique up to an element of P [1−n/p].
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Then, it is clear that the function u′ = v′ + z′ ∈ W 1, p
0 (Rn+) is the solution to

problem (N2).
(iii) Conversely, it is necessary to show that from un, π,u

′, we get a solution
(u, π) of the original problem (2.1).

From the previous steps it is clear that

−Δu′ +∇′π = 0 in Rn+,
un = gn on Γ,

∂nu
′ = g′ on Γ.

It remains to prove that

(2.7) −Δun + ∂nπ = 0 in R
n
+,

and finally, to prove relation (2.1b).
For (2.7), thanks to the first equations of (B) and (N1), we get

Δ(Δun − ∂nπ) = Δ2un = 0 in R
n
+.

With the boundary condition of (N1), it follows that Δun− ∂nπ satisfies the problem

(2.8) Δ(Δun − ∂nπ) = 0 in R
n
+, Δun − ∂nπ = 0 on Γ.

As well, Δun−∂nπ ∈W−1, p
0 (Rn+), and then by a uniqueness argument, we necessarily

have Δun − ∂nπ = 0 in R
n
+ (see [7, Theorem 3.5]).

For (2.1b), the boundary conditions of (N2) imply ∂n div
′ u′ = div′ g′ on Γ.

Besides, from the boundary conditions of (B), we get ∂2nun = − div′ g′ on Γ. Then
we have

∂n divu = ∂n div
′ u′ + ∂2nun = div′ g′ − div′ g′ = 0 on Γ.

So, divu satisfies the problem

(2.9) Δdivu = 0 in R
n
+, ∂n divu = 0 on Γ.

As well, divu ∈ Lp(Rn+), and hence divu = 0 in Rn+ (see [4] or [7, Theorem 3.3]).
(iv) Concerning the uniqueness question, we notice that un and π are unique. Let

u′ = (ui)1�i�n−1 and u′
† = (u†i )1�i�n−1 be solutions to (N2); then

Δ(ui − u†i ) = 0 in Rn+,

∂n(ui − u†i ) = 0 on Γ,

where ui − u†i ∈ W 1,p
0 (Rn+). So, we can deduce that ui − u†i ∈ NΔ

[1−n/p] (see [4]). It

remains to remark that NΔ
[1−n/p] = R if n � p, and NΔ

[1−n/p] = {0} if n > p.

Finally, the estimate of Proposition 2.1 is a straightforward consequence of the
Banach theorem. Let us notice that we can also get it from the estimates of the
auxiliary problems as we showed in [7] for the no-slip boundary conditions.

2.2. The nonhomogeneous case. Resting on the previous result, we now can
deal with the complete problem.

Theorem 2.3. Assume that n
p′ 	= 1. For any f ∈ W 0, p

1 (Rn+), h ∈ W 1, p
1 (Rn+),

gn ∈ W
1−1/p, p
0 (Γ), and g′ ∈ W

−1/p, p
0 (Γ), satisfying the following compatibility con-

dition if n < p′:

(2.10) ∀i ∈ {1, . . . , n− 1},
∫
R

n
+

fi dx = 〈gi, 1〉W−1/p, p
0 (Γ)×W 1/p, p′

0 (Γ)
,
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problem (S�) admits a solution (u, π) ∈ W 1, p
0 (Rn+)×Lp(Rn+), unique if n > p, unique

up to an element of Rn−1 × {0}2 if n � p, with the estimate

inf
ξ∈Rn−1×{0}

‖u+ ξ‖W 1, p
0 (Rn

+) + ‖π‖Lp(Rn
+)

� C
(
‖f‖W 0, p

1 (Rn
+) + ‖h‖W 1, p

1 (Rn
+) + ‖gn‖W 1−1/p, p

0 (Γ)
+ ‖g′‖

W
−1/p, p
0 (Γ)

)
if n � p, and the corresponding estimate without inf (ξ = 0) if n > p.

Proof. We can give a proof quite similar to that of the nonhomogeneous case for
the Stokes system with Dirichlet boundary conditions, by extension of the data f and
h to the whole space (see [7]). But another way is to combine this result with the
homogeneous case for the Stokes system with Navier boundary conditions. We will
follow this one.

First, we introduce the auxiliary problem

(2.11)
−Δz +∇η = f in Rn+,

div z = h in Rn+,
z = 0 on Γ.

With the assumption n
p′ 	= 1, we know that problem (2.11) admits a unique solution

(z, η) ∈ W 2, p
1 (Rn+) ×W 1, p

1 (Rn+) (see [7, Theorem 5.2]). Thus we can deduce that

∂nz
′|Γ ∈ W

1−1/p, p
1 (Γ). In addition, we can notice that we have the imbeddings

W 2, p
1 (Rn+) ↪→ W 1, p

0 (Rn+) and W 1, p
1 (Rn+) ↪→ Lp(Rn+) without condition, whereas we

have W
1−1/p, p
1 (Γ) ↪→W

−1/p, p
0 (Γ) only if n

p′ 	= 1.
Indeed, we can break it down into

W
1−1/p, p
1 (Γ) ↪→W 0, p

1/p (Γ) and W 0, p
1/p (Γ) ↪→W

−1/p, p
0 (Γ).

The first imbedding holds without condition. By duality, the second is equivalent to

W
1/p, p′

0 (Γ) ↪→W 0, p′

−1/p(Γ), which holds if n−1
p′ 	= 1

p , i.e.,
n
p′ 	= 1.

So, (z, η) ∈ W 1, p
0 (Rn+)×Lp(Rn+), and above all γ1z

′ ∈ W
−1/p, p
0 (Γ), which allows

us to consider the second auxiliary problem

(2.12)
−Δv +∇ϑ = 0 and div v = 0 in R

n
+,

vn = gn and ∂nv
′ = g′ − ∂nz

′ on Γ,

where g′ − ∂nz
′|Γ = g′ − γ1z

′ ∈ W
−1/p, p
0 (Γ). Then, Proposition 2.1 yields a pair

(v, ϑ) ∈ W 1, p
0 (Rn+)×Lp(Rn+) which is a solution to (2.12), provided the orthogonality

condition

(2.13) ∀ϕ′ ∈ R
n−1, 〈g′ − γ1z

′, ϕ′〉
W

−1/p, p
0 (Γ)×W

1/p, p′
0 (Γ)

= 0

is satisfied if n < p′. Now, we must write this condition by only the means of data.
It suffices to notice that we have for all ϕ ∈ Rn−1 × {0},∫

R
n
+

f · ϕ dx =

∫
R

n
+

(−Δz +∇η) · ϕ dx

= 〈γ1z′, ϕ′〉
W

−1/p, p
0 (Γ)×W

1/p, p′
0 (Γ)

,
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to deduce that condition (2.13) is written

∀ϕ′ ∈ R
n−1,

∫
R

n
+

f ′ ·ϕ′ dx = 〈g′, ϕ′〉
W

−1/p, p
0 (Γ)×W

1/p, p′
0 (Γ)

,

that is, more simply, the compatibility condition (2.10).
Then, the pair (u, π) = (v + z, ϑ + η) which belongs to W 1, p

0 (Rn+)× Lp(Rn+) is
a solution to (S�).

Finally, the uniqueness of solutions to (S�) is a straightforward consequence of
Proposition 2.1.

Remark 2.4. Unlike Dirichlet boundary conditions, with Navier conditions it is
not reasonable to consider data (f , h) in W−1, p

0 (Rn+) × Lp(Rn+). Indeed, with such

data for problem (2.11) we should get the velocity field z in the space W 1, p
0 (Rn+),

and we cannot give a meaning to the trace of ∂nz
′ in that case without an ad hoc

assumption. This limitation is not due to the method employed here; it is the same
situation as in the Neumann problem for the Laplacian (see [4]).

3. A wide class of behavior at infinity. Naturally, this problem will be solved
by the consideration of a scale of weights which extends the weight zero of the previous
section. After the study of the kernel of the operator associated to this problem, we
will show that the method established for the homogeneous system with the weight
zero works in fact for any weight. The main difficulty is getting compatibility con-
ditions into all the auxiliary problems from that of the original problem. Next, the
treatment of the nonhomogeneous system will be noticeably different.

3.1. The kernel. In the half-space, the key to this question is the reflection
principle. We can find an extensive study of this principle in the work of Farwig (see
[13]). With these boundary conditions, the reflection principle is simpler than that for
the Dirichlet conditions, and it can be deduced from the classical Schwarz reflection
principle for the harmonic functions.

Let  ∈ Z, and let (u, π) ∈ W 1, p
� (Rn+) ×W 0, p

� (Rn+) be an element of the kernel
of the Stokes operator with Navier boundary conditions—that is, a solution of (2.1)
with homogeneous boundary conditions; then the unique extension (ũ, π̃) of (u, π)
to the whole space, satisfying

−Δũ+∇π̃ = 0 and div ũ = 0 in R
n,

is given by the continuation formulae as follows: for all x = (x′, xn) ∈ Rn−,

ũ′(x) = u′(x∗), ũn(x) = −un(x∗), π̃(x) = π(x∗), where x∗ = (x′, −xn).
Moreover, such π̃ and ũ are, respectively, harmonic and biharmonic tempered distri-
butions in Rn, and thus polynomials. For all k ∈ Z, let us denote

S�k =
{
(λ, μ) ∈ PΔ2

k × PΔ
k−1; −Δλ+∇μ = 0 and divλ = 0 in R

n
+,

∂nλ
′ = 0 and λn = 0 on Γ

}
.

According to the maximum degree of polynomials in weighted Sobolev spaces (see
[2]), we can characterize this kernel as follows.

Corollary 3.1. Let  ∈ Z with hypothesis (1.6); then the kernel of the Stokes
operator with Navier boundary conditions in W 1, p

� (Rn+) × W 0, p
� (Rn+) is the space

S�[1−�−n/p].
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In fact, this kernel does not depend on the regularity according to the Sobolev
imbbedings. More precisely, we have the following result.

Corollary 3.2. Let  ∈ Z and m ∈ N∗ with (1.7); then the kernel of the Stokes
operator with Navier boundary conditions in Wm+1, p

m+� (Rn+)×Wm, p
m+�(R

n
+) is the space

S�[1−�−n/p].
Using an idea due to Boulmezaoud (see [10]), we can also express this space from

the polynomial spaces AΔ
k and NΔ

k which define the kernels of the Laplacian with
Dirichlet and Neumann boundary conditions in the half-space. With this aim, we
will use the operator ΠN—introduced in [5] for the biharmonic problem—defined as
follows:

∀s ∈ NΔ
k , ΠNs(x

′, xn) =
1

2
xn

∫ xn

0

s(x′, t) dt

and satisfying for all s ∈ NΔ
k , ΔΠNs = s in Rn+ and ΠNs = ∂nΠNs = 0 on Γ.

Proposition 3.3. Let  ∈ Z. The pair (λ, μ) ∈ S�[1−�−n/p] if and only if there

exists ϕ ∈ NΔ
[1−�−n/p] ×AΔ

[1−�−n/p] such that

(3.1) λ = ϕ−∇ΠN divϕ, μ = − divϕ.

Proof. Given (λ, μ) ∈ S�[1−�−n/p], we have Δμ = 0 in Rn+ and ∂nμ = 0 on Γ, and

hence μ ∈ NΔ
[1−�−n/p]. So we can write Δ(λ−∇ΠNμ) = Δλ−∇μ = 0, which implies

the existence of ϕ ∈ PΔ
[1−�−n/p] such that

(3.2) ϕ = λ−∇ΠNμ.

In fact, we can see that ϕ ∈ NΔ
[1−�−n/p]×AΔ

[1−�−n/p] by considerations on the parity of

λ′, λn, and∇ΠNμ. In addition, applying the operator div to (3.2), we get divϕ = −μ,
which yields (3.1) by substitution in (3.2).

Conversely, we can verify that such a pair (λ, μ) belongs to S�[1−�−n/p].
Remark 3.4. It is clear that if  > 0, this kernel is reduced to {0}, and if  = 0,

we find Rn−1 × {0}2 as in Proposition 2.1 and Theorem 2.3. However, for  > 0, a
compatibility condition symmetrically appears for the data, which extends that of the
weight zero.

3.2. Generalized solutions. Here is the generalization of Theorem 2.3 for any
weight  ∈ Z. This result will be completely proved at the end of this section.

Theorem 3.5. Let  ∈ Z and assume that

(3.3) n/p′ /∈ {1, . . . , + 1} and n/p /∈ {1, . . . ,−}.

For any f ∈ W 0, p
�+1(R

n
+), h ∈ W 1, p

�+1(R
n
+), gn ∈ W

1−1/p, p
� (Γ), and g′ ∈ W

−1/p, p
� (Γ)

satisfying the compatibility condition

∀ϕ ∈ NΔ
[1+�−n/p′] ×AΔ

[1+�−n/p′],∫
R

n
+

(f −∇h) ·ϕ dx + 〈div f , ΠN divϕ〉
W−1, p

�+1 (Rn
+)× ◦

W
1, p′
−�−1(R

n
+)

+

∫
Γ

gn ∂nϕn dx
′ − 〈g′, ϕ′〉

W
−1/p, p
� (Γ)×W

1−1/p′, p′
−� (Γ)

= 0,

(3.4)
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problem (S�) admits a solution (u, π) ∈ W 1, p
� (Rn+) × W 0, p

� (Rn+), unique up to an

element of S�[1−�−n/p], with the estimate

inf
(λ, μ)∈S�

[1−�−n/p]

(
‖u+ λ‖W 1, p

� (Rn
+) + ‖π + μ‖W 0, p

� (Rn
+)

)

� C
(
‖f‖W 0, p

�+1(R
n
+) + ‖h‖W 0, p

�+1(R
n
+) + ‖gn‖W 1−1/p, p

� (Γ)
+ ‖g′‖

W
−1/p, p
� (Γ)

)
.

Since the kernel has been characterized before, now it remains to show the ne-
cessity of condition (3.4) and, above all, the existence of a solution, that is, the
surjectivity of this operator. As for the weight zero, we will start with the homoge-
neous problem, and then we will consider more regular data on the boundary to finish
by this theorem.

3.3. The compatibility condition. If (u, π) is a solution to (S�), then we
have the following Green’s formula:

∀(λ, μ) ∈ S�[1+�−n/p′],∫
R

n
+

(−Δu+∇π) · λ dx −
∫
R

n
+

(divu)μ dx

= −
∫
Γ

un ∂nλn dx
′ +

〈
∂nu

′, λ′〉
W

−1/p, p
� (Γ)×W

1−1/p′, p′
−� (Γ)

+

∫
Γ

un μ dx
′.

Hence we have a first formulation of the compatibility condition for data f , h, gn, g
′:

∀(λ, μ) ∈ S�[1+�−n/p′],
∫
R

n
+

f · λdx −
∫
R

n
+

hμ dx

= −
∫
Γ

gn (∂nλn − μ) dx′ +
〈
g′, λ′〉

W
−1/p, p
� (Γ)×W

1−1/p′, p′
−� (Γ)

.

(3.5)

Now, in order to use Proposition 3.3, we can observe that

∀ϕ ∈ NΔ
[1+�−n/p′] ×AΔ

[1+�−n/p′],∫
R

n
+

f · (∇ΠN divϕ) dx = 〈− div f , ΠN divϕ〉
W−1, p

�+1 (Rn
+)× ◦

W
1, p′
−�−1(R

n
+)

and ∫
R

n
+

h divϕdx = −
∫
R

n
+

∇h ·ϕ dx.

On the other hand, for the trace terms, we have

λ′ = ϕ′ and ∂nλn − μ = ∂nϕn on Γ.

According to Proposition 3.3 and introducing these identities in (3.5), we get (3.4) as
a second formulation for the compatibility condition.
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3.4. Weak and strong solutions in the homogeneous case. Here again,
we start with the homogeneous Stokes system (2.1). In fact the method of subsection
2.1 works for any weight. The extra trouble comes from the compatibility conditions
for the auxiliary problems. Following step by step the proof of Proposition 2.1, we
throw light on this problem.

Proof of Proposition 2.1 revisited. Point (i) is unchanged.
(ii) The compatibility condition (3.4) adapted to problem (2.1) is written as

∀ϕ ∈ NΔ
[1+�−n/p′] ×AΔ

[1+�−n/p′],∫
Γ

gn ∂nϕn dx
′ − 〈g′, ϕ′〉

W
−1/p, p
� (Γ)×W

1−1/p′, p′
−� (Γ)

= 0.
(3.6)

Step 1. Problem (B). For (2.2), the compatibility condition is

(3.7) ∀ψ ∈ AΔ
[3+�−n/p′],

〈
Δ′gn − div′ g′, ∂nψ

〉
W

−1−1/p, p
� (Γ)×W

2−1/p′, p′
−� (Γ)

= 0

(see [7, Theorem 3.5]). By means of Green’s formulae, we can rewrite it as

∀ψ ∈ AΔ
[3+�−n/p′],

∫
Γ

gn ∂nΔ
′ψ dx′ + 〈g′, ∂n∇′ψ〉

W
−1/p, p
� (Γ)×W

1−1/p′, p′
−� (Γ)

= 0.

Now, to see that it is a consequence of (3.6), it suffices to remark that

∀ψ ∈ AΔ
[3+�−n/p′], Δ′ψ ∈ AΔ

[1+�−n/p′], and ∂n∇′ψ ∈ NΔ
[1+�−n/p′].

So, we get zn ∈W−1, p
� (Rn+)/AΔ

[−1−�−n/p] as a solution to (2.2).

For (2.3), the compatibility condition is

(3.8) ∀ψ ∈ AΔ
[1+�−n/p′], 〈zn, ψ〉

W−1, p
� (Rn

+)× ◦
W

1, p′
−� (Rn

+)
=

∫
Γ

gn ∂nψ dx′

(see [5, Theorem 2.5]). First, (3.6) implies that for any ψ ∈ AΔ
[1+�−n/p′], we have∫

Γ
gn ∂nψ dx′ = 0. It remains to show that the left-hand term is also zero. For this,

we need to express AΔ
[1+�−n/p′] by means of the kernel of the biharmonic operator

Bk—that is, the space of polynomials ζ such that Δ2ζ = 0 in Rn+ and ζ = ∂nζ = 0
on Γ. We showed in [5, Lemma 4.4] that

(3.9) ∀k ∈ Z, Bk+2 = ΠDAΔ
k ⊕ΠNNΔ

k ,

where ΠD—which is the equivalent for the odd harmonic polynomials with respect
to xn of the operator ΠN for the even harmonic polynomials with respect to xn—is
defined as follows:

∀r ∈ AΔ
k , ΠDr(x

′, xn) =
1

2

∫ xn

0

t r(x′, t) dt

and satisfies for all r ∈ AΔ
k , ΔΠDr = r in Rn+ and ΠDr = ∂nΠDr = 0 on Γ. From

(3.9), we get for any ψ ∈ AΔ
[1+�−n/p′], ΠDψ = ζ ∈ B[3+�−n/p′] and thus we have

ψ = Δζ. So, by means of a Green’s formula (see [7, Lemma 3.7] for the justification),
we get

∀ψ ∈ AΔ
[1+�−n/p′], ∃ζ ∈ B[3+�−n/p′] such that

〈zn, ψ〉
W−1, p

� (Rn
+)× ◦

W
1, p′
−� (Rn

+)
= 〈zn, Δζ〉 = 〈Δzn, ζ〉 = 0.
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So (3.8) is proved and we get un ∈W 1, p
� (Rn+)/AΔ

[1−�−n/p] as a solution to (2.3).

Step 2. Problem (N1). Here Δun ∈ W
−1−1/p, p
� (Γ) (see [7, Lemma 3.7]), and for

this problem, the compatibility condition is

(3.10) ∀ψ ∈ NΔ
[2+�−n/p′], 〈Δun, ψ〉W−1−1/p, p

� (Γ)×W 2−1/p′, p′
−� (Γ)

= 0

(see [7, Theorem 3.3]). For any ψ ∈ NΔ
[2+�−n/p′], if we put ζ =

∫ xn

0 ψ(x′, t) dt, this
yields ψ = ∂nζ with ζ ∈ AΔ

[3+�−n/p′]. Since Δun = Δ′gn − div′ g′ on Γ, we see that

(3.10) is exactly written as condition (3.7), which is satisfied.
So, we get π ∈ W 0, p

� (Rn+)/NΔ
[−�−n/p] as a solution to (N1).

Step 3. Problem (N2). For (2.6), the compatibility condition is

(3.11) ∀ψ ∈ NΔ
[�−n/p′],

∫
R

n
+

π ψ dx = 0

(see [4, Theorem 3.1]). According to (3.9), we also have, for any ψ ∈ NΔ
[�−n/p′],

ΠNψ = ζ ∈ B[2+�−n/p′], and thus ψ = Δζ. So, we have

∀ψ ∈ NΔ
[�−n/p′], ∃ζ ∈ B[2+�−n/p′] such that∫

R
n
+

π ψ dx =

∫
R

n
+

πΔζ dx = 〈Δπ, ζ〉 = 0.

Thus (3.11) is proved, and we get w ∈ W 2, p
� (Rn+)/NΔ

[2−�−n/p] as a solution to (2.6).

Consequently, v′ = ∇′w ∈ W 1, p
� (Rn+)/NΔ

[1−�−n/p] is a solution to problem (2.4).
Finally, for problem (2.5), the compatibility condition is

(3.12) ∀ϕ′ ∈ NΔ
[1+�−n/p′], 〈g′, ϕ′〉

W
−1/p, p
� (Γ)×W

1−1/p′, p′
−� (Γ)

= 0

(see [7, Theorem 3.4]). It is clear that (3.12), is include in (3.6), and then we get
z′ ∈ W 1, p

� (Rn+)/NΔ
[1−�−n/p] as a solution to (2.5).

So u′ = v′ + z′ ∈ W 1, p
� (Rn+)/NΔ

[1−�−n/p] is a solution to (N2).
Remark 3.6. The set of critical values for all these auxiliary problems is given

by hypothesis (1.6). This is the good set of critical values for the homogeneous
problem (2.1), and the supplementary value n/p′ =  + 1 will appear only in the
nonhomogeneous problem (S�).

(iii) To recover the nth component of (2.1a)—that is, (2.7)—and (2.1b) from
(B), (N1), and (N2), we will use the nonuniqueness of their respective solutions un, π,
and u′, constructed in (ii), to select a “good one.”

Since Δun − ∂nπ satisfies (2.8) and belongs to W−1, p
� (Rn+), we can deduce that

Δun−∂nπ ∈ AΔ
[−1−�−n/p]. As π is defined up to an element ofNΔ

[−�−n/p], ∂nπ is defined

up to an element of AΔ
[−1−�−n/p], and thus we can choose π such that Δun− ∂nπ = 0.

Since divu satisfies (2.9) and belongs to W 0, p
� (Rn+), we can deduce that divu ∈

NΔ
[−�−n/p]. As u′ is defined up to an element of NΔ

[1−�−n/p], div
′ u′ is defined up to

an element of NΔ
[−�−n/p], and thus we can choose u′ such that divu = 0.

To finish this proof, let us notice that the characterization of the kernel gives an
answer to point (iv).

So we have established the existence of weak solutions to the homogeneous prob-
lem, and we can sum up in the following result.



1806 C. AMROUCHE, Š. NEČASOVÁ, AND Y. RAUDIN

Proposition 3.7. Let  ∈ Z with hypothesis (1.6). For any gn ∈ W
1−1/p, p
� (Γ)

and g′ ∈ W
−1/p, p
� (Γ), satisfying the compatibility condition (3.6), problem (2.1)

admits a solution (u, π) ∈ W 1, p
� (Rn+) × W 0, p

� (Rn+), unique up to an element of

S�[1−�−n/p], with the estimate

inf
(λ, μ)∈S�

[1−�−n/p]

(
‖u+ λ‖W 1, p

� (Rn
+) + ‖π + μ‖W 0, p

� (Rn
+)

)

� C
(
‖gn‖W 1−1/p, p

� (Γ)
+ ‖g′‖

W
−1/p, p
� (Γ)

)
.

Now, always for the homogeneous problem, we will consider the case of more
regular boundary conditions, which yields strong solutions.

Proposition 3.8. Let  ∈ Z and assume that

(3.13) n/p′ /∈ {1, . . . , + 1} and n/p /∈ {1, . . . ,−− 1}.

For any gn ∈W
2−1/p, p
�+1 (Γ) and g′ ∈ W

1−1/p, p
�+1 (Γ), satisfying condition (3.6), problem

(2.1) admits a solution (u, π) ∈ W 2, p
�+1(R

n
+)×W 1, p

�+1(R
n
+), unique up to an element of

S�[1−�−n/p], with the corresponding estimate.

Proof. We simply resume the proof of Proposition 3.7, which we named “Proof
of Proposition 2.1 revisited” at the beginning of subsection 3.4, using the regularity
results for the harmonic and biharmonic operators.

First, for the biharmonic problem (B), split into the Dirichlet problems (2.2) and
(2.3), we find zn ∈W 0, p

�+1(R
n
+) to be a solution to (2.2) (see [7, Theorem 3.8]); as well,

we find un ∈ W 2, p
�+1(R

n
+) to be a solution to (2.3) (see [3, Corollary 3.4]). Second,

for the first Neumann problem (N1), we find π ∈ W 1, p
�+1(R

n
+) (see [7, Theorem 3.4]).

Last, concerning the second Neumann problem (N2), we find u′ ∈ W 2, p
�+1(R

n
+) (see [4,

Corollary 3.3]). Moreover, all these results hold under hypothesis (3.13), which yields
the optimal set of critical values for such data.

Remark 3.9. We can also get Proposition 3.8 as a regularity result from Propo-

sition 3.7. Indeed, we have W
2−1/p, p
�+1 (Γ) ↪→ W

1−1/p, p
� (Γ) if n

p 	= −. On the

other hand, the imbedding W
1−1/p, p
�+1 (Γ) ↪→ W

−1/p, p
� (Γ) can be broken down into

W
1−1/p, p
�+1 (Γ) ↪→ W 0, p

�+1/p(Γ) and W
0, p
�+1/p(Γ) ↪→ W

−1/p, p
� (Γ). The first imbedding also

holds if n
p 	= −, and, by duality, we find n

p′ 	=  + 1 as a condition for the second

imbedding. So, under hypothesis (3.13), if in addition n
p 	= −, we can deduce from

Proposition 3.7 that problem (2.1) admits a solution (u, π) ∈ W 1, p
� (Rn+)×W 0, p

� (Rn+).
Then, as in [7, Corollary 5.5], we can show by regularity arguments that in fact
(u, π) ∈ W 2, p

�+1(R
n
+) ×W 1, p

�+1(R
n
+). The cost of this approach is thus the supplemen-

tary critical value n
p = −.

3.5. The nonhomogeneous case. We start with enough regular data on the
boundary—that is, the data of Proposition 3.8—to get strong solutions to the com-
plete problem.

Theorem 3.10. Let  ∈ Z with hypothesis (3.13). For any f ∈ W 0, p
�+1(R

n
+),

h ∈ W 1, p
�+1(R

n
+), gn ∈ W

2−1/p, p
�+1 (Γ), g′ ∈ W

1−1/p, p
�+1 (Γ), satisfying condition (3.4),

problem (S�) admits a solution (u, π) ∈ W 2, p
�+1(R

n
+) ×W 1, p

�+1(R
n
+), unique up to an



STOKES SYSTEM WITH NAVIER BOUNDARY CONDITIONS 1807

element of S�[1−�−n/p], with the estimate

inf
(λ, μ)∈S�

[1−�−n/p]

(
‖u+ λ‖W 2, p

�+1(R
n
+) + ‖π + μ‖W 1, p

�+1(R
n
+)

)

� C
(
‖f‖W 0, p

�+1(R
n
+) + ‖h‖W 0, p

�+1(R
n
+) + ‖gn‖W 2−1/p, p

�+1 (Γ)
+ ‖g′‖

W
1−1/p, p
�+1 (Γ)

)
.

Proof. It suffices to show the existence. We will naturally use the result in the
homogeneous case established above. First, we consider the lifted problem

(S	)

{ −Δv +∇π = F and div v = H in R
n
+,

vn = 0 and ∂nv
′ = 0 on Γ.

Indeed, according to Lemma 1.1, there exists a lifting function ug′ ∈ W 2, p
�+1(R

n
+)

of g′ such that ∂nug′ = g′ on Γ, and there also exists ugn ∈ W 2, p
�+1(R

n
+) such that

ugn = gn on Γ. Then, if we put ug = (ug′ , ugn), F = f +Δug, H = h− divug, and
v = u−ug , the two problems (S	) and (S�) are equivalent. In addition, by means of
Green’s formulae, we can easily verify that condition (3.5)—i.e., the alternative form
of (3.4)—becomes, for (S	),

(3.14) ∀(λ, μ) ∈ S�[1+�−n/p′],
∫
R

n
+

F · λdx −
∫
R

n
+

H μ dx = 0.

Next, we extend F and H to the whole space by F̃ ∈ W 0, p
�+1(R

n) and H̃ ∈ W 1, p
�+1(R

n)
as follows:

∀ϕ ∈ D(Rn), ∀ψ ∈ D(Rn),∫
Rn

F̃ · ϕ dx =

∫
R

n
+

F · (ϕ′ +ϕ′∗, ϕn − ϕ∗
n) dx,∫

Rn

H̃ ψ dx =

∫
R

n
+

H (ψ + ψ∗) dx,

(3.15)

where ψ∗(x) = ψ(x∗) for any x = (x′, xn) ∈ Rn with x∗ = (x′, −xn). We can also
give a functional writing for this extension:

(F̃ , H̃)(x′, xn) =
{

(F , H)(x′, xn) if xn > 0,
(F ′, −Fn, H)(x′, −xn) if xn < 0.

Now, by Theorem 1.3, with hypothesis (3.13), we know that there exists (w, ϑ) ∈
W 2, p

�+1(R
n)×W 1, p

�+1(R
n), a solution to the problem

(S̃) : −Δw +∇ϑ = F̃ and divw = H̃ in R
n,

provided the condition (F̃ , H̃) ⊥ S[1+�−n/p′] is fulfilled, that is,

(3.16) ∀(Λ, M) ∈ S[1+�−n/p′],
∫
Rn

F̃ ·Λdx −
∫
Rn

H̃ M dx = 0.

Thanks to (3.15), we can write (3.16) as

(3.17)

∫
R

n
+

F · (Λ′ +Λ′∗, Λn − Λ∗
n) dx −

∫
R

n
+

H (M +M∗) dx = 0.
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Since (Λ′+Λ′∗, Λn−Λ∗
n, M+M∗) ∈ S�[1+�−n/p′], condition (3.17)—and thus (3.16)—is

a simple consequence of (3.14). Then, the pair of functions (v, π) defined in Rn+ by

(v, π) =
1

2
(w′ +w′∗, wn − w∗

n, ϑ+ ϑ∗)

belongs to W 2, p
�+1(R

n
+)×W 1, p

�+1(R
n
+) and, by a straightforward calculation, we can see

that it satisfies (S	).
Now, we can establish the existence of generalized solutions announced in subsec-

tion 3.2.
Proof of the existence in Theorem 3.5. (i) Assume that n

p′ > + 1. According to

Proposition 3.7, there exists (v, ϑ) ∈ W 1, p
� (Rn+)×W 0, p

� (Rn+) satisfying{ −Δv +∇ϑ = 0 and div v = 0 in Rn+,
vn = gn and ∂nv

′ = g′ on Γ.

In addition, by Theorem 3.10, there exists (w, ζ) ∈ W 2, p
�+1(R

n
+)×W 1, p

�+1(R
n
+) satisfying{ −Δw +∇ζ = f and divw = h in R

n
+,

wn = 0 and ∂nw
′ = 0 on Γ.

The pair (u, π) = (v +w, ϑ+ ζ) gives an answer to the question.
(ii) Assume that n

p′ <  + 1. We cannot directly construct a solution as above.
Indeed, the compatibility conditions—which are now nontrivial—of the auxiliary
and initial problems must coincide. LetN be the dimension of the subspace S�[1+�−n/p′]
of W 2, p′

−�+1(R
n
+)×W 1, p′

−�+1(R
n
+), which is imbedded in W 0, p′

−�−1(R
n
+)×W−1, p′

−�−1 (R
n
+), and

let {e1, . . . , eN} be a basis of S�[1+�−n/p′]. According to the Hahn–Banach theorem,

there exists a family {e∗1, . . . , e∗N} of elements of W 0, p
�+1(R

n
+)×W 1, p

�+1(R
n
+), which ex-

tends the dual basis of the dual space
(S�[1+�−n/p′])′. First, we can give a more compact

writing of the compatibility condition (3.5)—which is equivalent to (3.4)—as

∀(λ, μ) ∈ S�[1+�−n/p′],
〈(f , −h), (λ, μ)〉

W 0, p
�+1(R

n
+)×W 0, p

� (Rn
+),W 0, p′

−�−1(R
n
+)×W 0, p′

−� (Rn
+)

=
〈
g, (λ′, μ− ∂nλn)

〉
W

−1/p, p
� (Γ)×W 1−1/p, p

� (Γ),W
1−1/p′, p′
−� (Γ)×W−1/p′, p′

−� (Γ)
,

where g = (g′, gn). We denote the corresponding trace mapping by

κ : W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+) −→ W

2−1/p′, p′

−�+1 (Γ)×W
1−1/p′, p′

−�+1 (Γ),

(λ, μ) �−→ (γ0λ
′, γ0μ− γ1λn),

and εi = κ(ei). With a suitable numbering of the family, {ε1, . . . , εd} form a basis

of the subspace κ
(S�[1+�−n/p′]) of W 2−1/p′, p′

−�+1 (Γ) ×W
1−1/p′, p′

−�+1 (Γ) ↪→ W
−1/p′, p′

−�−1 (Γ) ×
W

−1−1/p′, p′

−�−1 (Γ) and εi = 0 for i ∈ {d+1, . . . , N}. Here again, according to the Hahn–
Banach theorem, there exists a family {ε∗1, . . . , ε∗d} of elements of W

1−1/p, p
�+1 (Γ) ×

W
2−1/p, p
�+1 (Γ) which extends the dual basis of {ε1, . . . , εd}. Now, let us consider the

functions defined by

(F , −H) =

N∑
i=1

e∗i 〈(f , −h), ei〉 and G =

d∑
i=1

ε∗i 〈g, εi〉 .
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They satisfy

〈(F , −H), ek〉 = 〈(f , −h), ek〉 = 〈g, εk〉 for k ∈ {1, . . . , N},
〈(F , −H), ek〉 = 〈G, εk〉 = 〈g, εk〉 for k ∈ {1, . . . , d},
〈(F , −H), ek〉 = 〈G, εk〉 = 0 for k ∈ {d+ 1, . . . , N}.

By Theorem 3.10, there exists (v, ϑ) ∈ W 2, p
�+1(R

n
+)×W 1, p

�+1(R
n
+) satisfying{

(−Δv +∇ϑ, div v) = (f − F , h−H) in Rn+,
(∂nv

′, vn) = 0 on Γ.

By Proposition 3.7, there exists (w, ζ) ∈ W 1, p
� (Rn+)×W 0, p

� (Rn+) satisfying{
(−Δw +∇ζ, divw) = 0 in Rn+,

(∂nw
′, wn) = g −G on Γ.

By Theorem 3.10, there exists (z, η) ∈ W 2, p
�+1(R

n
+)×W 1, p

�+1(R
n
+) satisfying{

(−Δz +∇η, div z) = (F , H) in Rn+,
(∂nz

′, zn) = G on Γ.

Finally, the pair (u, π) = (v +w + z, ϑ+ ζ + η) proves the existence.
To end this section, we can give a global regularity result which extends the strong

solutions of Theorem 3.10.
Corollary 3.11. Let  ∈ Z and m � 1 be two integers, and assume (1.7). For

all f ∈ Wm−1, p
m+� (Rn+), h ∈Wm, p

m+�(R
n
+), gn ∈ W

m+1−1/p, p
m+� (Γ), and g′ ∈ W

m−1/p, p
m+� (Γ),

satisfying the compatibility condition (3.4), problem (S�) admits a solution (u, π) ∈
Wm+1, p

m+� (Rn+)×Wm, p
m+�(R

n
+), unique up to an element of S�[1−�−n/p], with the estimate

inf
(λ, μ)∈S�

[1−�−n/p]

(
‖u+ λ‖Wm+1, p

m+� (Rn
+) + ‖π + μ‖Wm, p

m+�(R
n
+)

)

� C
(
‖f‖Wm−1, p

m+� (Rn
+) + ‖h‖Wm,p

m+�(R
n
+) + ‖gn‖Wm+1−1/p, p

m+� (Γ)
+ ‖g′‖

W
m−1/p, p
m+� (Γ)

)
.

Proof. The case m = 1 corresponds to Theorem 3.10. We suppose that m � 2.
(1) Assuming that  � −2, hypothesis (1.7)—which yields the set of critical

values—is reduced to n/p /∈ {1, . . . ,− − m}. We begin by establishing the result
for the homogeneous problem, as in Proposition 3.8. The arguments are the same,
using the regularity results for the Laplacian with Dirichlet and Neumann boundary
conditions (see [3, 5]). Next, for the complete problem, we apply the method of the
proof of Theorem 3.10 with an ad hoc extension for F and H—in this case, there is
no compatibility condition.

(2) Assuming that  � −1 and n/p′ /∈ {1, . . . ,  + 1}, we can adapt the proof
by induction of the regularity result for the Stokes system with Dirichlet boundary
conditions (see [7, Corollary 5.5]).

4. Very weak solutions. The aim of this section is to return to the homoge-
neous problem (2.1) in which we envisage now very singular data on the boundary;
that is, more precisely,

g′ ∈ W
−1−1/p, p
�−1 (Γ) and gn ∈W

−1/p, p
�−1 (Γ).
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First, we will establish two preliminary lemmas. The second one yields a Green’s
formula in order to solve this new problem by a duality argument.

Let us denote by

T : (u, π) �−→ (−Δu+∇π, − divu)

the Stokes operator. For any  ∈ Z, we introduce the space

T p�, 1(R
n
+) =

{
(u, π) ∈ W 0, p

�−1(R
n
+)×W−1, p

�−1 (Rn+);

T (u, π) ∈ W 0, p
�+1, 1(R

n
+)×W 0, p

�, 1 (R
n
+)
}
,

which is a reflexive Banach space equipped with the graph-norm. Then we have the
following density result.

Lemma 4.1. Let  ∈ Z and assume that

(4.1) n/p′ /∈ {1, . . . , − 1} and n/p /∈ {1, . . . ,−+ 1};

then the space D(Rn+)×D(Rn+) is dense in T p�, 1(R
n
+).

Proof. For every continuous linear form Λ ∈ (T p�, 1(Rn+))′, there exists a unique

(v, ζ, w, ϑ) ∈ W 0, p′
−�+1(R

n
+)×

◦
W

1, p′
−�+1(R

n
+)×W 0, p′

−�−1,−1(R
n
+)×W 0, p′

−�,−1(R
n
+) such that

for all (u, π) ∈ T p�, 1(R
n
+),

(4.2) 〈Λ, (u, π)〉 = 〈(v, ζ), (u, π)〉 + 〈(w, ϑ), T (u, π)〉 .

Thanks to the Hahn–Banach theorem, it suffices to show that any Λ which vanishes
on D(Rn+) × D(Rn+) is actually zero on T p�, 1(R

n
+). Let us suppose that Λ = 0 on

D(Rn+)×D(Rn+) and thus on D(Rn+)×D(Rn+). Then we can deduce from (4.2) that

(v, ζ) + T (w, ϑ) = 0 in R
n
+,

and hence T (w, ϑ) ∈ W 0, p′
−�+1(R

n
+)×

◦
W

1, p′
−�+1(R

n
+). Let ṽ, ζ̃ , w̃, ϑ̃ be, respectively, the

zero extensions of v, ζ, w, ϑ to Rn. By (4.2), it is clear that we have

(ṽ, ζ̃) + T (w̃, ϑ̃) = 0 in R
n,

and thus T (w̃, ϑ̃) ∈ W 0, p′
−�+1(R

n)×W 1, p′
−�+1(R

n). Besides, we have the following Green’s
formula: for any (ϕ, ψ) ∈ D(Rn)×D(Rn),

(4.3)
〈
T (w̃, ϑ̃), (ϕ, ψ)

〉
=
〈
(w̃, ϑ̃), T (ϕ, ψ)

〉
.

On the other hand, we have both S[1−�−n/p] ⊂ W 2, p
�+1, 1(R

n) ×W 1, p
�+1, 1(R

n) and the

imbedding W 2, p
�+1, 1(R

n)×W 1, p
�+1, 1(R

n) ↪→ W 0, p
�−1(R

n)×W−1, p
�−1 (Rn) under hypothesis

(4.1); then by the density of D(Rn) × D(Rn) in W 2, p
�+1, 1(R

n) ×W 1, p
�+1, 1(R

n), we can

deduce that (4.3) holds for any (ϕ, ψ) ∈ S[1−�−n/p], and thus T (w̃, ϑ̃) ⊥ S[1−�−n/p].
With this orthogonality condition, we can apply Theorem 1.3, and it follows that

(w̃, ϑ̃) ∈ W 2, p′
−�+1(R

n)×W 1, p′
−�+1(R

n). Since w̃ and ϑ̃ are the zero extensions ofw and ϑ,

it follows that (w, ϑ) ∈
◦
W2, p′

−�+1(R
n
+)×

◦
W

1, p′
−�+1(R

n
+). Then, by the density of D(Rn+)×
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D(Rn+) in
◦
W 2, p′

−�+1(R
n
+)×

◦
W

1, p′
−�+1(R

n
+), we can construct a sequence (wk, ϑk)k∈N

⊂
D(Rn+)×D(Rn+) such that (wk, ϑk) → (w, ϑ) in

◦
W2, p′

−�+1(R
n
+) ×

◦
W

1, p′

−�+1 (Rn+). Thus,
for any (u, π) ∈ T p�, 1(R

n
+), we have

〈Λ, (u, π)〉 = −〈T (w, ϑ), (u, π)〉 + 〈(w, ϑ), T (u, π)〉
= lim

k→∞
{− 〈T (wk, ϑk), (u, π)〉 + 〈(wk, ϑk), T (u, π)〉}

= 0;

i.e., Λ is identically zero.
Thanks to this density lemma, we can prove the following result.
Lemma 4.2. Let  ∈ Z. Under hypothesis (4.1), we can define the following linear

continuous mapping—that is, the traces of order 1 for the tangential component and
of order 0 for the normal component of the velocity field:

γ� : T p�, 1(R
n
+) −→ W

−1−1/p, p
�−1 (Γ)×W

−1/p, p
�−1 (Γ),

(u, π) �−→ (∂nu
′, un)|Γ = (γ1u1, . . . , γ1un−1, γ0un).

Moreover, we have the following Green’s formula:

∀(u, π) ∈ T p�, 1(R
n
+), ∀(ϕ, ψ) ∈ W 2, p′

−�+1(R
n
+)×W 1, p′

−�+1(R
n
+)

such that ϕn = 0, ∂nϕ
′ = 0, and divϕ = 0 on Γ,

〈T (u, π), (ϕ, ψ)〉
W 0, p

�+1, 1(R
n
+)×W 0, p

�, 1 (Rn
+), W 0, p′

−�−1,−1(R
n
+)×W 0, p′

−�,−1(R
n
+)

= 〈(u, π), T (ϕ, ψ)〉
W 0, p

�−1(R
n
+)×W−1, p

�−1 (Rn
+), W 0, p′

−�+1(R
n
+)× ◦

W
1, p′
−�+1(R

n
+)

+ 〈(∂nu′, un), (ϕ′, ψ − ∂nϕn)〉Γ .

(4.4)

Proof. Let us make two remarks to start. First, the left-hand term in (4.4) is
nothing but the integral

∫
R

n
+
T (u, π) · (ϕ, ψ) dx. Second, the reason for the loga-

rithmic factor in the definition of T p�, 1(R
n
+) is that the imbeddings W 2, p′

−�+1(R
n
+) ↪→

W 0, p′
−�−1,−1(R

n
+) andW

1, p′
−�+1(R

n
+) ↪→ W 0, p′

−�,−1(R
n
+) hold without supplementary critical

value with respect to (4.1)—whereas the imbedding W 2, p′
−�+1(R

n
+) ↪→ W 0, p′

−�−1(R
n
+) fails

if n/p′ ∈ {, + 1}.
So we can write the following Green’s formula:

∀(u, π) ∈ D(Rn+)×D(Rn+), ∀(ϕ, ψ) ∈ W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+)

such that ϕn = 0, ∂nϕ
′ = 0 and divϕ = 0 on Γ,∫

R
n
+

T (u, π) · (ϕ, ψ) dx =

∫
R

n
+

(u, π) · T (ϕ, ψ) dx

+

∫
Γ

(∂nu
′, un) · (ϕ′, ψ − ∂nϕn) dx

′.

(4.5)

We can deduce the following estimate:

|〈(∂nu′, un), (ϕ′, ψ − ∂nϕn)〉Γ| � ‖(u, π)‖Tp
�, 1(R

n
+) ‖(ϕ, ψ)‖W 2, p′

−�+1(R
n
+)×W 1, p′

−�+1(R
n
+)
.
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According to Lemma 1.1, for any μ = (μ′, μn) ∈ W
2−1/p′, p′

−�+1 (Γ)×W 1−1/p′, p
−�+1 (Γ), there

exists a lifting function (ϕ, ψ) ∈ W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+) such that

(γ0, γ1)ϕ
′ = (μ′, 0) ∈ W

2−1/p′, p′

−�+1 (Γ)×W
1−1/p′, p
−�+1 (Γ),

(γ0, γ1)ϕn = (0, − div′ μ′) ∈W
2−1/p′, p′

−�+1 (Γ)×W
1−1/p′, p
−�+1 (Γ),

γ0ψ = μn − div′ μ′ ∈ W
1−1/p′, p
−�+1 (Γ),

i.e., (ϕ′, ψ − ∂nϕn) = μ with ϕn = 0, ∂nϕ
′ = 0, and divϕ = 0 on Γ, satisfying

‖(ϕ, ψ)‖
W 2, p′

−�+1(R
n
+)×W 1, p′

−�+1(R
n
+)

� C ‖μ‖
W

2−1/p′, p′
−�+1 (Γ)×W 1−1/p′, p′

−�+1 (Γ)
,

where C is a constant not depending on (ϕ, ψ) and μ. Then we can deduce that

‖(∂nu′, un)‖W−1−1/p, p
�−1

(Γ)×W−1/p, p
�−1

(Γ)
� C ‖(u, π)‖Tp

�, 1(R
n
+).

Thus the linear mapping γ� : (u, π) �−→ (∂nu
′, un)|Γ defined on D(Rn+) × D(Rn+) is

continuous for the norm of T p�, 1(R
n
+). In addition, since D(Rn+) × D(Rn+) is dense in

T p�, 1(R
n
+), the mapping γ� can be extended by continuity to a mapping still called

γ� ∈ L(T p�, 1(Rn+); W
−1−1/p, p
�−1 (Γ) ×W

−1/p, p
�−1 (Γ)

)
. Moreover, we can also deduce the

formula (4.4) from (4.5) by density of D(Rn+)×D(Rn+) in T
p
�, 1(R

n
+).

Thanks to this lemma, we now can give the result for singular boundary condi-
tions.

Theorem 4.3. Let  ∈ Z with hypothesis (4.1). For any g = (g′, gn) ∈
W

−1−1/p, p
�−1 (Γ)×W

−1/p, p
�−1 (Γ), satisfying the compatibility condition

∀ϕ = (ϕ′, ϕn) ∈ NΔ
[1+�−n/p′] ×AΔ

[1+�−n/p′],

〈g′, ϕ′〉
W

−1−1/p, p
�−1 (Γ)×W

2−1/p′, p′
−�+1 (Γ)

= 〈gn, ∂nϕn〉W−1/p, p
�−1 (Γ)×W 1−1/p′, p′

−�+1 (Γ)
,

(4.6)

problem (2.1) admits a solution (u, π) ∈ W 0, p
�−1(R

n
+) ×W−1, p

�−1 (Rn+), unique up to an

element of S�[1−�−n/p], and there exists a constant C such that

inf
(λ, μ)∈S�

[1−�−n/p]

(
‖u+ λ‖W 0, p

�−1(R
n
+) + ‖π + μ‖W−1, p

�−1 (Rn
+)

)
� C ‖g‖Γ.

Proof. To start with, let us observe that such a pair (u, π) belongs to T p�, 1(R
n
+),

and then Lemma 4.2 gives meaning to these boundary conditions. Next, we can
observe that problem (2.1) is equivalent to the variational formulation: find (u, π) ∈
W 0, p

�−1(R
n
+)×W−1, p

�−1 (Rn+) satisfying

∀(v, ϑ) ∈ W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+)

such that vn = 0, ∂nv
′ = 0, and div v = 0 on Γ,

〈(u, π), T (v, ϑ)〉
W 0, p

�−1
(Rn

+)×W−1, p
�−1

(Rn
+), W 0, p′

−�+1
(Rn

+)× ◦
W

1, p′
−�+1

(Rn
+)

= −〈g, (v′, ϑ− ∂nvn)〉W−1−1/p, p
�−1

(Γ)×W−1/p, p
�−1

(Γ), W
2−1/p′, p′
−�+1

(Γ)×W 1/p, p′
−�+1

(Γ)
.

(4.7)

Indeed, the direct implication is straightforward. Conversely, if the pair (u, π) satisfies
(4.7), then we have for any (ϕ, ψ) ∈ D(Rn+)×D(Rn+),

〈T (u, π), (ϕ, ψ)〉D′(Rn
+)×D′(Rn

+),D(Rn
+)×D(Rn

+) = 〈(u, π), T (ϕ, ψ)〉 = 0,
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and thus T (u, π) = 0 in Rn+. In addition, according to the Green’s formula (4.4), we
have

∀(v, ϑ) ∈ W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+)

such that vn = 0, ∂nv
′ = 0 and div v = 0 on Γ,

〈(∂nu′, un), (v′, ϑ− ∂nvn)〉Γ = 〈g, (v′, ϑ− ∂nvn)〉Γ .
As we saw in the proof of Lemma 4.2, by Lemma 1.1, it follows that for any μ ∈
W

2−1/p′, p′

−�+1 (Γ)×W
1−1/p′, p′

−�+1 (Γ),

〈(∂nu′ − g′, un − gn), μ〉Γ = 0,

that is, ∂nu
′ = g′ and un = gn on Γ. Hence (u, π) satisfies (2.1).

Now, let us solve problem (4.7). By Theorem 3.10, we know that under hypothesis

(4.1), for all (f , h) ∈ W 0, p′
−�+1(R

n
+)×

◦
W

1, p′
−�+1(R

n
+) ⊥ S�[1−�−n/p], there exists a unique

(v, ϑ) ∈ W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+)/S�[1+�−n/p′] solution to

−Δv +∇ϑ = f and div v = h in R
n
+, ∂nv

′ = 0 and vn = 0 on Γ,

with the estimate

‖(v, ϑ)‖
W 2, p′

−�+1
(Rn

+)×W 1, p′
−�+1

(Rn
+)/S�

[1+�−n/p′]
� C

(
‖f‖

W 0, p′
−�+1

(Rn
+)

+ ‖h‖
W 1, p′

−�+1
(Rn

+)

)
.

Consider the linear form Ξ : (f , h) �−→ 〈g, (v′, ϑ− ∂nvn)〉Γ defined on the product

space W 0, p′
−�+1(R

n
+)×

◦
W

1, p′
−�+1(R

n
+) ⊥ S�[1−�−n/p]. According to (4.6), we have for any

ϕ ∈ NΔ
[1+�−n/p′] ×AΔ

[1+�−n/p′], or equivalently, for any (λ, μ) ∈ S�[1+�−n/p′],

|Ξ(f , h)| = |〈g, (v′ +ϕ′, ϑ− ∂nvn + ∂nϕn)〉Γ|
=
∣∣〈g, ([v′ + λ′], [ϑ+ μ]− ∂n[vn + λn])

〉
Γ

∣∣
� C ‖g‖

W
−1−1/p, p
�−1 (Γ)×W−1/p, p

�−1 (Γ)
‖(v, ϑ) + (λ, μ)‖

W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+)
.

Thus

|Ξ(f , h)| � C ‖g‖
W

−1−1/p, p
�−1 (Γ)×W−1/p, p

�−1 (Γ)
‖(v, ϑ)‖

W 2, p′
−�+1(R

n
+)×W 1, p′

−�+1(R
n
+)/S�

[1+�−n/p′]

� C ‖g‖
W

−1−1/p, p
�−1 (Γ)×W−1/p, p

�−1 (Γ)

(
‖f‖

W 0, p′
−�+1(R

n
+)

+ ‖h‖
W 1, p′

−�+1(R
n
+)

)
.

In other words, Ξ is continuous on W 0, p′
−�+1(R

n
+) × ◦

W
1, p′
−�+1(R

n
+) ⊥ S�[1−�−n/p], and

according to the Riesz representation theorem, we can deduce that there exists a
unique (u, π) ∈ W 0, p

�−1(R
n
+) × W−1, p

�−1 (Rn+)/S�[1−�−n/p], which is the dual space of

W 0, p′
−�+1(R

n
+)×

◦
W

1, p′
−�+1(R

n
+) ⊥ S�[1−�−n/p], such that

∀(f , h) ∈ W 0, p′
−�+1(R

n
+)×

◦
W

1, p′
−�+1(R

n
+),

Ξ(f , h) = 〈u,f 〉
W 0, p

�−1(R
n
+)×W 0, p′

−�+1(R
n
+)

+ 〈π,−h〉
W−1, p

�−1 (Rn
+)× ◦

W
1, p′
−�+1(R

n
+)
.

Then, we can conclude that the pair (u, π) satisfies (4.7) and, moreover, that the

kernel of the associated operator is S�[1−�−n/p].
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To end this study, using the method of the proof of the existence in Theorem 3.5,
we can establish the existence of very weak solutions to the nonhomogeneous problem
with very singular boundary conditions.

Theorem 4.4. Let  ∈ Z and assume that

n/p′ /∈ {1, . . . , + 1} and n/p /∈ {1, . . . ,−+ 1}.

For any f ∈ W 0, p
�+1(R

n
+), h ∈ W 1, p

�+1(R
n
+), gn ∈ W

−1/p, p
�−1 (Γ), g′ ∈ W

−1−1/p, p
�−1 (Γ),

satisfying the compatibility condition

∀ϕ ∈ NΔ
[1+�−n/p′] ×AΔ

[1+�−n/p′],∫
R

n
+

(f −∇h) ·ϕ dx + 〈div f , ΠN divϕ〉
W−1, p

�+1 (Rn
+)× ◦

W
1, p′
−�−1(R

n
+)

+ 〈gn, ∂nϕn〉W−1/p, p
�−1 (Γ)×W

1−1/p′, p′
−�+1 (Γ)

− 〈g′, ϕ′〉
W

−1−1/p, p
�−1 (Γ)×W

2−1/p′, p′
−�+1 (Γ)

= 0,

problem (S�) admits a solution (u, π) ∈ W 0, p
�+1(R

n
+) ×W−1, p

�−1 (Rn+), unique up to an

element of S�[1−�−n/p], with the estimate

inf
(λ, μ)∈S�

[1−�−n/p]

(
‖u+ λ‖W 0, p

�−1
(Rn

+) + ‖π + μ‖W−1, p
�−1 (Rn

+)

)

� C
(
‖f‖W 0, p

�+1(R
n
+) + ‖h‖W 0, p

�+1(R
n
+) + ‖gn‖W−1/p, p

�−1 (Γ)
+ ‖g′‖

W
−1−1/p, p
�−1 (Γ)

)
.
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