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8. J. Kopal, M. Rozložńık, M. Tůma, Factorized approximate inverses
with adaptive dropping, SIAM J. Sci. Comput. 38 (3), 2016, A1807–
A1820.
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The Story of this Thesis

The Gram-Schmidt orthogonalization is perhaps the most widely
known representative of a broad class of orthogonalization techniques
and strategies. Although the notion of orthogonalization has been
around for almost 200 years, only the papers by Jorgen Pedersen Gram
and Erhard Schmidt lead to their popularization [12] [37]. Brief bi-
ographies of Gram and Schmidt can be found in the survey paper
[26].

In this thesis we focus on the numerical behavior of such schemes
used for orthogonalization of column vectors. Throughout this text,
the orthogonalized vectors are given in advance as the columns of the
matrix denoted by A. In particular, we analyze the orthogonaliza-
tion process of E. Schmidt who recognized that his variant, known
nowadays as classical Gram-Schmidt (CGS) algorithm, is essentially
the same as an earlier algorithm introduced by J.P. Gram. A slight
change of this algorithm gives the modified Gram-Schmidt (MGS) al-
gorithm, that already appeared in a certain form much earlier in the
book of P.S. Laplace [25]. Although these two variants are mathemat-
ically equivalent, due to rounding errors the set of vectors computed
by these two schemes can be far from orthogonal (see e.g. [4]). In
various textbooks one can read such statements that CGS can be un-
stable, and it can quickly lose all semblance of orthogonality or the
orthogonality is completely absent. Up to a quite recent time, with the
exception of a conjecture without proof by Kielbasinski and Schwetlick
[20] [21], there was no bound for the loss of orthogonality in the CGS
algorithm. The mechanism of the loss of orthogonality in the CGS
algorithm was not studied at all. On the other hand, it was known
already some time that the MGS algorithm has much better numer-
ical properties. Thanks to the famous result of seminal paper of A.
Björck [3], later reinforced by A. Björck and C.C. Paige in [5], it can
be shown that the loss of orthogonality caused by rounding errors in
MGS is linked linearly to the condition number κ(A) of the matrix A.

Having in mind the first intuitive attempt of Kielbasinski to give
a bound for CGS [20], we started to look at this problem. We man-
aged to give a proof of the bound where the loss of orthogonality
between the computed vectors depends on the (n − 1)-th power of
κ(A), whereas n is the dimension of the initial matrix. However, our
extensive numerical experiments indicated that this bound can be a
huge overestimate and the loss of orthogonality for all problems does
not depend on higher powers of the condition number than 2. In col-
laboration with L. Giraud, J. Langou and J. van der Eshof we proved
in [10] that the loss of orthogonality for CGS can be bounded in terms
of the square of the condition number κ(A). This is true for every ma-
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trix A such that AT A is numerically nonsingular. The key observation
here is that the computed triangular factor is numerically similar to
the triangular factor computed in the Cholesky factorization of the as-
sociated cross-product (or Gram) matrix AT A. This result essentially
leads to theoretical justification of CGS that was widely overlooked
and considered as unreliable. We also illustrated through numerical
experiments that this bound is sharp [10], [11]. These results were
further reinforced by J. Barlow, J. Langou and A. Smoktunowicz in
[2], who pointed out the importance of a stable computation of nor-
malization coefficients in CGS.

Another important open problem was related to the reorthogonal-
ization that is frequently used to improve the orthogonality of vectors
computed by some Gram-Schmidt scheme. The orthogonalization step
(either in the CGS or MGS algorithm) is iterated twice or several times
and the ultimate goal is to produce a set of vectors whose orthogonality
is close to the working precision. Extensive experiments with itera-
tive versions of Gram-Schmidt process were performed by Rice [31]
and various schemes have been studied by several authors, including
Abdelmalek, Daniel, Gragg, Kaufmann, Stewart and Ruhe [1], [6] and
[36]. The first simple analysis for the case of two given vectors due
to Kahan was published by Parlett in [30], who showed that unless
the vectors are linearly dependent to roundoff unit, one reorthogo-
nalization suffices to achieve orthogonality also to the round off unit
level. Unfortunately, such analysis cannot be extended to the case
with more than two vectors. Later, Hoffmann taking into account ex-
perimental results on numerical nonsingular problems in [17], observed
that a third iteration never occurred for both CGS and MGS. Hoff-
mann thus conjectured that two iterations are enough for obtaining
orthogonality on the level of round off unit also for general problems
with more than two vectors [17]. However, a theoretical foundation
for this observation remained an open question. In collaboration with
L. Giraud and J. Langou we succeeded to analyze the CGS algorithm
with one reorthogonalization. Assuming numerical full rank of the
matrix A, we proved that these two iterations are sufficient to guaran-
tee the orthogonality between computed vectors to the roundoff unit
level [10], [11]. The key ingredient for the proof is the fact that the
norm of the computed projection after the first step cannot be infi-
nitely small, and it is bounded from below by the minimal singular
value of A. Our main contribution explains that the size of normaliza-
tion coefficients in the Gram-Schmidt process is essentially controlled
by the condition number of the matrix A. Thus the “two-steps-are-
enough” conjecture is indeed true for any set of initial vectors with a
numerical full-rank. The importance of having such result was even
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more profound since many recent experimental results indicate that
CGS with (one) reorthogonalization maybe faster than MGS despite
the fact that it performs twice as many arithmetical operations.

The above mentioned results on the loss of orthogonality in the
Gram-Schmidt algorithm can be applied in the context of the GMRES
method that is one of the most important and widely used iterative
methods for solving linear systems. The classical GMRES method for
solving nonsymmetric linear systems is based on the Arnoldi process,
where some Gram-Schmidt algorithm is applied for constructing an
orthonormal basis of associated Krylov subspace. This process is sig-
nificantly different from the standard orthogonalization where the vec-
tors are given in advance, since in the Arnoldi process the new vectors
in the basis are computed recursively from previously computed basis
vectors. It was shown in [8] that it can be seen as a recursive column-
oriented QR of a particular matrix with the conditioning closely re-
lated to the minimum residual least squares problem in the GMRES
method.

Numerical behavior of several implementations of GMRES was an-
alyzed some time ago by several authors [8], [13]. In collaboration with
C.C. Paige and Z. Strakoš we have proved in [29] the backward stabil-
ity of the MGS GMRES algorithm showing that it belongs to numer-
ically stable and reliable iterative schemes. The concept of backward
stability of an iterative method is rather different from the standard
concept used for direct methods, see e.g. [8] or [29]. It assumes that
at some iteration step that is less or equal than the dimension, the
computed approximate solution satisfies the perturbed linear system,
where the relative perturbations of the system matrix and the right-
hand side are proportional to the roundoff unit.

We also studied numerical stability for several other implemen-
tations of GMRES. Variants of residual minimizing Krylov subspace
methods were comprehensively described in the paper [34] that served
as a starting point for later developments. In the joint paper with J.
Liesen and Z. Strakoš [27] we explain that the choice of the Krylov
subspace basis is substantial for the numerical stability of GMRES.
This is the case also for Simpler GMRES proposed in [38]. By shifting
the Arnoldi process to begin with a different vector, a non-orthogonal
basis of the Krylov subspace is generated. This leads to the imple-
mentation of GMRES, where the associated least squares problem is
replaced by an easier-to-solve triangular system, see [38]. Simpler GM-
RES is numerically unstable due to the fact that the chosen Krylov
basis is getting ill-conditioned as soon as the approximate solution con-
verges. Closer to the exact solution, higher condition number of the
basis and upper triangular matrix leading to the poor accuracy of the
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computed approximate solution. This result is quite counterintuitive,
and it actually shows, that even the most stable orthogonalization
technique used in Simpler GMRES does not ensure a high accuracy
of computed approximate solution.

On the other hand, in the paper with M.H. Gutknecht and P.
Jiránek [19] we proved that the Krylov subspace basis containing the
normalized residuals from the GMRES method is well-conditioned as
long as we have a reasonable residual norm decrease. These results
lead to a new implementation of GMRES (called RB-SGMRES) which
is conditionally backward stable. The notion of conditional backward
stability is also quite different from the notion of conditional backward
stability standardly used e.g. for Gaussian elimination. Another sta-
ble variant of Simpler GMRES was proposed in the joint work with P.
Jiránek [18]. It is based on the adaptive choice of the Krylov subspace
basis at a given iteration step with the use of a criterion monitoring
the intermediate residual norm decrease.

Later we continued our research considering a more general setting
assuming the orthogonalization of vectors not only with respect to the
standard inner product, but also with respect to some non-standard
inner product, symmetric indefinite or skew-symmetric bilinear form.
Throughout this text, the matrix that induces the inner product or bi-
linear form is denoted by B. In collaboration with M. Tůma, A. Smok-
tunowicz and J. Kopal [35] we analyzed a numerical behavior of the
most frequently used orthogonalization schemes with respect to some
non-standard inner product. We looked at the effects of conditioning
of B on the factorization and gave bounds for the loss of orthogonality
in such Gram-Schmidt process showing a significant difference to the
case with the standard inner product or with the diagonal weighting.
It is given by the fact that the size of local rounding errors in the or-
thogonalization is not determined by a nonstandard norm of the basis
vectors but by their Euclidean norm that can be much larger up to
the factor related to the condition number κ(B) of the matrix B that
induces this inner product. Note that the problem of extension of
results existing for the standard inner product is nontrivial especially
in cases where the norm induced by B is not monotonic and where it
may happen that minimization of the B-norm of the projections com-
puted in the orthogonalization process may lead to the amplification
of local rounding errors due to their large Euclidean norms.

The theory when the basis of standard unit vectors is orthogo-
nalized with respect to some other inner product is even more devel-
oped as it is heavily used in such applications as approximate inverse
preconditioning. An important class of preconditioners is based on
computing an approximate factorization of the matrix inverse that is

vi



sufficiently sparse and robust. A new approach to construct approx-
imate inverses for a symmetric positive definite matrix was proposed
in the joint paper with M. Tůma and J. Kopal [22]. This scheme is
based on adaptive dropping that is orthogonalization step dependent
and on monitoring the condition number of the triangular factor in
the related Gram-Schmidt algorithm.

We analyzed also the numerical behavior of the Gram-Schmidt or-
thogonalization with respect to a symmetric indefinite bilinear form
that is induced by a general symmetric but nonsingular matrix B. In
contrast to the case of inner product where the accuracy of computed
factors depends only on conditioning of the initial matrix and of the
matrix B that induces this inner product, the accuracy of schemes with
bilinear forms depends also on the conditioning of all principal subma-
trices of the Gram matrix AT BA, where there is a change of the sign in
the corresponding signature matrix. This result was shown in collab-
oration with F. Okulicka-Dluzewska and A. Smoktunowicz. Indeed,
the orthogonalization with respect to a bilinear form is much more
complicated. Nevertheless, several algorithms for computing such fac-
torizations were analyzed in [33], including the classical Gram-Schmidt
and Gram-Schmidt with reorthogonalization.

The matrices that are orthogonal with respect to the indefinite
signature matrix are often called J-orthogonal matrices. In the paper
with F.J. Hall several connections between the class of J-orthogonal
and the class of the so-called G-matrices were established. Based
on this relation, several results on the sign patterns of J-orthogonal
matrices were developed in [9].

As it is discussed in the last part of this thesis, the situation is
even more complicated in the case of orthogonalization with respect
to a skew-symmetric bilinear form, since the normalization step is
not uniquely defined and there is a freedom in the computation of
corresponding semi-symplectic and triangular factors. Such structure
preserving algorithms are very popular tool in numerical linear algebra
and various implementations of orthogonalization schemes were intro-
duced. In a joint paper with H. Fassbender we presented best choices
for free parameters in such orthogonalization scheme, in particular
the parameters that minimize the condition number of the diagonal
blocks in the triangular factor, or the parameters that minimize the
condition number of the corresponding block in the semi-symplectic
factor. For details we refer to the paper [9].

The author of this thesis would like to thank the coauthors of all
papers in this thesis for their invention, effort, patience and friendship
throughout many years of our collaboration.
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1 Orthogonalization with respect to the stan-

dard inner product

Let A = (a1, . . . , an) ∈ Rm,n be a real m× n matrix with a full column rank
with m ≥ rank(A) = n. Throughout this section we consider orthogonal-
ization techniques with respect to the standard inner product that generate
an orthogonal basis Q = (q1, . . . , qn) ∈ Rm,n of span(A) such that A = QR,
where R = (ri,j) ∈ Rn,n is upper triangular, and it contains the off-diagonal
orthogonalization coefficients ri,j, i = 1, . . . j−1 and positive orthonormaliza-
tion coefficients rj,j on its diagonal for each j = 1, . . . , n. It is well-known that
if the diagonal entries are set positive, then Q and R are uniquely defined.
It follows from QT Q = I that the factor R is equal to the Cholesky factor
of the Gram-matrix AT A satisfying AT A = RT R. Moreover, the condition
numbers of Q and R are equal to κ(Q) = 1 and κ(R) = κ(A).

There is no doubt that Gram-Schmidt orthogonalization is the most
widely known and used orthogonalization technique for computing the fac-
tors Q and R. In commemoration of the 100th anniversary of contributions of
Gram and Schmidt, a comprehensive survey of results on the Gram-Schmidt
orthogonalization was published in [26]. It starts with a brief biographies to-
gether with the discussion of relation of their works to the QR factorization
and to least squares problems. Introductory sections of [26] are followed with
such issues as the loss of orthogonality between the vectors computed in fi-
nite precision arithmetic, reorthogonalization, stable solution of least squares
problem or applications or application of Gram-Schmidt to Krylov subspace
methods. Several computational version of the Gram-Schmidt process has
been derived and analyzed.

In this section we focus on numerical properties of the Gram-Schmidt
orthogonalization and we study the effects of rounding errors on this or-
thogonalization technique. The Gram-Schmidt process has two basic com-
putational variants: the classical Gram-Schmidt (CGS) algorithm and the
modified Gram-Schmidt (MGS) algorithm (see e.g. [3, 4, 26]). Due to round-
ing errors the set of vectors produced by either of these two methods can be
far from orthogonal and sometimes the orthogonality can even be completely
absent [3, 31]. Generally it is agreed that the MGS algorithm has much better
numerical properties than the CGS algorithm [31, 4]. It is also well-known
that the orthogonality between the vectors computed either by CGS or MGS
can be improved by reorthogonalization. Here we concentrate on the clas-
sical or modified Gram-Schmidt algorithms and the classical Gram-Schmidt
algorithm with reorthogonalization. These three algorithms are summarized
in Table 1.
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classical Gram-Schmidt:
for j = 1, . . . , n

uj = aj

for i = 1, . . . , j − 1
ri,j = 〈aj, qi〉
uj = uj − ri,jqi

rj,j =
√
‖aj‖2 −

∑j−1
i=1 r2

i,j

qj = uj/rj,j

modified Gram-Schmidt:
for j = 1, . . . , n

uj = aj

for i = 1, . . . , j − 1
ri,j = 〈uj, qi〉
uj = uj − ri,jqi

rj,j =
√
‖aj‖2 −

∑j−1
i=1 r2

i,j

qj = uj/rj,j

classical Gram-Schmidt with reorthogonalization:
for j = 1, . . . , n

uj = aj

for k = 1, 2
a

(k)
j = uj

for i = 1, . . . , j − 1
r
(k)
i,j = 〈a(k)

j , qi〉
uj = uj − r

(k)
i,j qi

rj,j = ‖uj‖
qj = uj/rj,j

Table 1: Gram-Schmidt orthogonalization with respect to standard inner
product: classical algorithm, modified algorithm, and classical algorithm
with reorthogonalization.

As the main goals of this section, we give a bound for the loss of orthogo-
nality between the computed vectors in CGS, and under certain assumption
on numerical nonsingularity of A we prove that their orthogonality can be sig-
nificantly improved by one step of reorthogonalization. These two results are
perhaps our most important contributions to understanding the numerical
behavior the classical Gram-Schmidt algorithm and its version with reorthog-
onalization.
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1.1 Rounding error analysis of classical Gram-Schmidt
algorithm

It was observed in numerical experiments that the classical Gram-Schmidt
process can compute a set of vectors which is far from orthogonal and some-
times the orthogonality can be lost completely [3, 31, 21, 20]. The key ob-
servation is that the computed triangular factor is numerically similar to the
triangular factor computed in the Cholesky factorization of the associated
cross-product (or Gram) matrix AT A. It was shown in [10] that the triangu-
lar factor R̄ computed in CGS is an exact Cholesky factor of the perturbed
matrix AT A + E satisfying

AT A + E = R̄T R̄, ‖E‖ ≤ O(u)‖A‖2, (1)

where ‖‖̇ denotes the spectral matrix norm andO(u) denotes some low-degree
polynomial in the dimensions m and n multiplied by the roundoff unit u.

This result essentially gives rise to the fact that the loss of orthogonality
between the vectors computed by the classical Gram-Schmidt algorithm can
be bounded by the term proportional to the square of condition number of the
matrix A. As it was shown in [10, 2], provided that the Gram matrix AT A
is numerically nonsingular, i.e. assuming that O(u)κ2(A) < 1, the loss of
orthogonality between the column vectors in the factor Q̄ computed by the
classical Gram-Schmidt process can be bounded by a term proportional to
the square of the condition number of A. Indeed, we have

‖I − Q̄T Q̄‖ ≤ O(u)κ2(A)

1−O(u)κ(A)
. (2)

For rigorous analysis and other details we refer to the papers [10, 2, 11].

1.2 Gram-Schmidt algorithm with reorthogonalization

In contrast to the modified Gram-Schmidt algorithm [3, 4, 5], where the loss
of orthogonality depends linearly on the conditioning of initial vectors as

‖I − Q̄T Q̄‖ ≤ O(u)κ(A)

1−O(u)κ(A)
, (3)

in the case of the classical Gram-Schmidt algorithm we have the quadratic
dependence. Depending on the condition number of A, it may be or may
not be satisfactory in practical situations. It is well-known fact that the
orthogonality between computed vectors can be improved by reorthogonal-
ization [6, 17, ?]. The key ingredient is the proof that two steps are enough
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for ensuring the orthogonality on the optimal level, when we apply the classi-
cal or modified Gram-Schmidt algorithm on a set of numerically nonsingular
vectors satisfying the assumption O(u)κ(A) < 1. It is based on a result
showing that the norm of the projection ūj computed in even finite precision
arithmetic cannot be infinitely small and essentially it is is bounded from
below by the minimal singular value of A so that

‖ūj‖ ≥ σn(A)−O(u)‖A‖. (4)

Using previous bound, it was shown in [10] that one step of reorthogonal-
ization is enough for preserving the orthogonality of computed vectors close
to the unit roundoff level. Assuming the numerical nonsingularity of ini-
tial column vectors, the orthogonality of the vectors Q̄ computed by the
classical Gram-Schmidt process with one step of reorthogonalization can be
bounded as

‖I − Q̄T Q̄‖ ≤ O(u). (5)

This phenomenon is often called as “two-steps-are-enough”. For details we
refer to the papers [10], [1] and to the short survey paper [11].

2 Arnoldi algorithm and GMRES

Given a squared nonsingular matrix A ∈ Rm,m and a vector b ∈ Rm, the
j-th Krylov subspace generated by A and b is defined as

Kj(A, b) = span{b, Ab, . . . , Aj−1b}, j = 1, 2, . . . .

The results on the Gram-Schmidt orthogonalization of vectors can also be
used in the context of the Arnoldi algorithm for constructing an orthonormal
basis Vj = (v1, . . . , vj) of the Krylov subspace Kj(A, b). In the variants of the
Arnoldi algorithm that are based on the Gram-Schmidt orthogonalization the
first vector v1 is taken as a normalized vector b and a new basis vector vj+1 is
the normalized result of the orthogonalization of the vector Avj with respect
to the previously generated vectors v1, . . . , vj. Thus Arnoldi algorithm can
be seen as a column-oriented QR factorization

[b, AVj] = Vj+1Rj+1, (6)

where Rj+1 ∈ Rj+1,j+1 is upper triangular with orthogonalization coefficients
in its strict upper triangular part and with normalization coefficients on its
diagonal. On the other hand, it is well-known fact that the conditioning of
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the matrix [b, AVj] is closely related to the associated minimum residual least
squares problem

‖b− AVjyj‖ = min
y∈Rj

‖b− AVjy‖, (7)

where xj = Vjyj, j = 1, 2, . . . , defines the sequence of approximate solutions
to the linear system Ax = b generated by the Generalized minimum resid-
ual (GMRES) method. The minimum residual principle is represented by the
least squares problem (7), and thus the GMRES method is often described
as a sequence of least squares problems of increasing dimension. Mathe-
matically (in exact arithmetic), there are several algorithmic variants for
generating this sequence. Computationally (in finite precision arithmetic),
however, different algorithms for computing the same sequence may produce
significantly different results [8].

2.1 Backward stability of MGS-GMRES

The most usual implementation is modified Gram-Schmidt GMRES (MGS-
GMRES). Using the relationship (6) it was shown [13] that the loss of orthog-
onality between the vectors V̄j+1 computed by the modified Gram-Schmidt
Arnoldi algorithm is bounded as

‖I − V̄ T
j+1V̄j+1‖ ≤

O(u)κ([v̄1, AV̄j])

1−O(u)κ([v̄1, AV̄j])
. (8)

In addition, assuming that miny ‖v̄1 − AV̄jy‖ ≥ O(u)κ(A) the condition
number of the matrix [v̄1, AV̄j] can be bounded further as

κ([v̄1, AV̄j]) ≤
O(1)κ(A)

miny∈Rj ‖v̄1 − AV̄jy‖
.

Thus the complete loss of orthogonality (resulting into loss of linear indepen-
dence of computed vectors) in the modified Gram-Schmidt Arnoldi algorithm
can occur only after the residual rj = b − AV̄jyj reaches its final accuracy
level O(u)κ(A). These results were reinforced in the paper [29], where it was
shown that MGS-GMRES is a backward stable algorithm. Indeed, for some
iteration step j ≤ m the computed approximate solution x̄j in MGS-GMRES
satisfies the perturbed system (A + ∆Aj)x̄j = b + ∆bj, where the relative
perturbations are proportional to the roundoff unit as ‖∆Aj‖/‖A‖ ≤ O(u)
and ‖∆bj‖/‖b‖ ≤ O(u). This result depends on a more general result on
the backward stability of a variant of the MGS algorithm applied to solv-
ing the minimum residual least squares problem, and uses results on MGS
and its loss of orthogonality, together with an important relation between
least squares residual norms and singular values of matrices associated to
the studied least squares problem. For details we refer to [29].
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2.2 Simpler GMRES is inherently unstable

Finite precision analysis was performed for several important implementa-
tions of GMRES [29, 27, 19, 18]. Our results in [27, 19] explain why the
choice of the Krylov subspace basis is fundamental for the numerical stability
of some implementation. Instead of Vj we consider in general a nonorthogonal
but normalized basis Zj = (z1, . . . , zj) of the Krylov subspace Kj(A, b), the
approximate solutions xj in GMRES can be written as xj = Zjzj, whereas
the coefficient vector zj is given as the solution of the upper triangular system
Ujzj = QT

j b and where Qj = (q1, . . . , qj) denotes the orthonormal basis of the
subspace AKj(A, b) obtained from the QR factorization AZj = QjUj. As it
was shown for the case of Simpler GMRES in [27], where Zj = [b/‖b‖, Qj−1],
this choice of the basis is not very suitable from the stability of point of
view. The conditioning of [b/‖b‖, Qj−1] is related to the convergence of the
GMRES method as

‖b‖
miny∈Rj ‖b− AVjy‖

≤ κ([b/‖b‖, Qj−1]) ≤
2‖b‖

miny∈Rj ‖b− AVjy‖
. (9)

Due to (9) small residuals in the GMRES method lead to the ill-conditioning
of matrices A[b/‖b‖, Qj−1] and Uj and this affects negatively the accuracy of
computed coefficient vectors zj and approximate solutions xj. Indeed, even
the best possible orthogonalization technique used for computing the basis Qj

does not compensate for the loss of accuracy due to an inappropriate choice of
the basis Zj. Therefore, Simpler GMRES is inherently less numerically stable
than the the usual implementation of GMRES that uses classical or modified
Gram-Schmidt algorithm. The details can be found in [27] and [19].

2.3 How to make simpler GMRES and GCR method
more stable

We have already indicated that a different choice of the basis can significantly
influence the numerical behavior of the resulting implementation. While Sim-
pler GMRES is less stable due to the ill-conditioning of the basis [b/‖b‖, Qj−1]
, the residual basis defined as Zj = R̃j = (r̃0, . . . , r̃j−1), where r̃k = rk/‖rk‖
for k = 0, . . . , j−1 (with r0 = b) is the normalized residual from the GMRES
method, is well-conditioned as long as we have a reasonable residual norm
decrease. It was shown in [19] that if b 6∈ AKj−1(A, b) and ‖rk‖ < ‖rk−1‖ for
k = 1, . . . j − 1, the condition number of R̃j satisfies

κ(R̃j) ≤

√√√√m

(
1 +

j−1∑
k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2

)
. (10)
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These results lead to a new implementation, which is conditionally backward
stable [19]. They also explain the experimentally observed fact that an-
other mathematically equivalent method called GCR delivers very accurate
approximate solutions when it converges fast enough without stagnation.

Another stable variant of Simpler GMRES was proposed in [18] and it is
based on the adaptive choice of the Krylov subspace basis at a given itera-
tion step using the intermediate residual norm decrease criterion. The new
direction vector in the basis Zj is chosen as in the original implementation
of Simpler GMRES or it is equal to the normalized residual vector r̃j. We
show that such an adaptive strategy leads to a well-conditioned basis of the
Krylov subspace and chosen the appropriate criterion such implementation of
GMRES computes very accurate approximate solutions. A detailed analysis
can be found in [18].

3 Orthogonalization with respect to a non-

standard inner product

Considering the inner product 〈·, ·〉B induced by some symmetric positive
definite matrix B ∈ Rm,m, we can look for the B-orthogonal basis Q =
(q1, . . . , qn) ∈ Rm,n of the range of A = (a1, . . . , an) ∈ Rm,n satisfying the
condition QT BQ = I. The Gram-Schmidt orthogonalization with respect
to such nonstandard inner product leads to the factors Q and R satisfying
A = QR, where R ∈ Rn,n is upper triangular with positive diagonal en-
tries. It is clear that if B is symmetric positive definite, then the Gram
matrix AT BA is also symmetric positive definite and its Cholesky factor
is exactly equal to the factor R. It follows also from AT BA = RT R that
extremal singular values and condition number of R satisfy

‖R‖ = ‖B1/2A‖, ‖R−1‖ = 1/σm(B1/2A), κ(R) = κ(B1/2A) = κ1/2(AT BA),

where B1/2 stands for the square root of the matrix B. Although the column
vectors in the factor Q are orthogonal with respect to the inner product 〈·, ·〉B,
they are no longer orthogonal with respect to the standard inner product.
Depending on the conditioning of the matrix B, the matrix Q can be rather
ill-conditioned. Its extremal singular values and condition number satisfy

‖Q‖ ≤ ‖B−1‖1/2, σm(Q) ≥ 1/‖B‖1/2, κ(Q) ≤ κ1/2(B).

The corresponding classical Gram-Schmidt algorithm, modified Gram-Schmidt
algorithm, and classical Gram-Schmidt algorithm with reorthogonalization
are given in Table 2.
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classical Gram-Schmidt:
for j = 1, . . . , n

uj = aj

for i = 1, . . . , j − 1
ri,j = 〈aj, qi〉B
uj = uj − ri,jqi

rj,j =
√
‖aj‖2

B −
∑j−1

i=1 r2
i,j

qj = uj/rj,j

modified Gram-Schmidt:
for j = 1, . . . , n

uj = aj

for i = 1, . . . , j − 1
ri,j = 〈uj, qi〉B
uj = uj − ri,jqi

rj,j =
√
‖aj‖2

B −
∑j−1

i=1 r2
i,j

qj = uj/rj,j

classical Gram-Schmidt with reorthogonalization:
for j = 1, . . . , n

uj = aj

for k = 1, 2
a

(k)
j = uj

for i = 1, . . . , j − 1
r
(k)
i,j = 〈a(k)

j , qi〉B
uj = uj − r

(k)
i,j qi

rj,j = ‖uj‖B

qj = uj/rj,j

Table 2: Gram-Schmidt orthogonalization with respect to nonstandard in-
ner product: classical algorithm, modified algorithm, and classical algorithm
with reorthogonalization.

3.1 Numerical properties of orthogonalization meth-
ods with a nonstandard inner product

In paper [35] we study the numerical properties of several orthogonaliza-
tion schemes, where the inner product is induced by a nontrivial symmetric
positive definite matrix B. We analyzed the effect of its conditioning on the
factorization and the loss of orthogonality between vectors computed in finite
precision arithmetic. We consider the reference implementation based on the
backward stable eigen-decomposition, modified and classical Gram-Schmidt
algorithms, classical Gram-Schmidt algorithm with reorthogonalization as
well as the implementation motivated by the approximate inverse precondi-
tioner called AINV.
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It is shown that in the case of a diagonal (and positive definite) B is sim-
ilar to the case with the standard inner product where B = I. The bounds
for the loss of B-orthogonality between the computed vectors Q̄ in the clas-
sical and modified Gram-Schmidt algorithm are analogous to the bounds (2)
and (3), respectively, but the matrix A is replaced by the matrix B1/2A. For
a diagonal B the matrix B1/2A is just the matrix A scaled by rows. Thus ap-
plication of the Gram-Schmidt algorithm with the B-inner product applied
to A is thus numerically similar to the Gram-Schmidt algorithm with the
standard inner product applied to the row-scaled matrix B1/2A.

The situation is more complicated in the case of a general symmetric
positive definite B, where the norm ‖ · ‖B induced by B is not monotonic.
Rounding error analysis of the classical Gram-Schmidt algorithm or modified
Gram-Schmidt algorithm can be extended also to such case of nonstandard
inner product. However, the resulting bounds contain additional factors that
depend explicitly or implicitly on the condition number κ(B).

It is shown in [35] (see also [28]) that if O(u)κ(B)κ(B1/2A)κ(A) < 1,
then the loss of orthogonality in Q̄ computed by the classical Gram-Schmidt
algorithm is bounded by

‖I − Q̄T BQ̄‖ ≤ O(u)‖B‖1/2‖Q̄‖κ(B1/2A)κ1/2(B)κ(A)

1−O(u)‖B‖1/2‖Q̄‖κ(B1/2A)κ1/2(B)κ(A)
. (11)

Indeed the loss of B-orthogonality in the classical Gram-Schmidt algorithm is
bounded by a quantity proportional not only to κ(B1/2A)κ1/2(B)κ(A) (that
essentially means the square of the condition number of the matrix B1/2A or
in other words the condition number of the Gram matrix AT BA) but also to
the additional factor ‖B‖1/2‖Q̄‖ with the worst-case bound

‖B‖1/2‖Q̄‖ ≤ κ1/2(B).

For the modified Gram-Schmidt algorithm it is proved in [35] that assum-
ing O(u)κ(B1/2A)κ(B) < 1 the loss of orthogonality between the computed
columns in Q̄ is bounded by

‖I − Q̄T BQ̄‖ ≤ O(u)‖B‖1/2‖Q̄‖κ1/2(B)κ(B1/2A)

1−O(u)‖B‖1/2‖κ1/2(B)Q̄‖κ(B1/2A)
. (12)

The loss of B-orthogonality in the modified Gram-Schmidt algorithm is thus
significantly better than in the classical Gram-Schmidt algorithm. Never-
theless, the bound (12) is proportional not only to the condition number
of B1/2A but also to the quantity ‖B‖1/2‖Q̄‖κ1/2(B) that can be in the
worst-case equal to κ(B) and that represents the effect of the nonstandard
inner product induced by the matrix B.
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The B-orthogonality between the vectors computed by the Gram-Schmidt
algorithm can be thus significantly lost and it can be improved by reorthog-
onalization. Here we consider the classical Gram-Schmidt algorithm with
(one step of) reorthogonalization, see Table 2. The key idea here is that the
B-norm of the projection computed after the first orthogonalization step is
not infinitely small, but it remains bounded from below by the minimal sin-
gular value of the matrix B1/2A. Taking into account also the second orthog-
onalization step, this result leads to the bound for the B-orthogonality that
does not depend on the matrix B1/2A. Assuming O(u)κ1/2(B)κ(B1/2A) < 1,
the loss of B-orthogonality between the computed columns of Q̄ in the clas-
sical Gram-Schmidt algorithm with reorthogonalization is bounded by

‖I − Q̄T BQ̄‖ ≤ O(u)‖B‖‖Q̄‖2. (13)

Note that although this bound does not depend on B1/2A, it does depend on
the condition number of B as ‖B‖‖Q̄‖2 ≤ κ(B). For details we refer, e.g., to
papers [35] or [28].

3.2 Approximate inverse preconditioning

For the particular case A = I the situation is more developed and the idea of
computing B-orthogonal vectors from standard unit basis vectors is heavily
used in many applications. If A = I, then the matrix R is the Cholesky factor
of B satisfying B = RT R and the factor Q = R−1 is its upper triangular in-
verse satisfying κ(Q) = κ(R) = κ1/2(B). In addition, Q represents an inverse
factor in the triangular factorization A−1 = QQT . One of the important pre-
conditioning classes involves computing an approximate inverse factorization
such that it is a sparse approximation of A−1. Many efficient schemes with
incomplete factorizations of this form have been proposed and they are fre-
quently used for practical problems. Although the main motivation for their
development comes from parallel processing, concerns on the robustness and
accuracy of such schemes became very important. The initial techniques as
the AINV algorithm use for (incomplete) orthogonalization various oblique
projections or the classical Gram-Schmidt algorithm. The AINV algorithm
is actually a modification of the modified Gram-Schmidt algorithm “back-
wards” to the classical Gram-Schmidt algorithm. However, the recent trend
is to stabilize them in terms of orthogonalization technique used in the fac-
torization. This has lead to the use of modified Gram-Schmidt algorithm in
the preconditioner called SAINV together with the accurate computation of
diagonal entries in R. More detailed description and appropriate references
can be found in [35].
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A new approach to construct approximate inverses for a symmetric posi-
tive definite matrix B is proposed in [22]. This scheme is based on adaptive
dropping in the computation of factors Q̂ and R̂ in approximate factorizations
Q̂R̂ ≈ I and R̂Q̂ ≈ I so that R̂T R̂ ≈ B and Q̂Q̂T ≈ B−1. Indeed, using the
approximate inverse Q̂Q̂T as a preconditioner for the system Bx = b, where
B ∈ Rm,m and b ∈ Rm, the preconditioned system is of the form

Q̂T BQ̂y = Q̂T b, x = Q̂y. (14)

The quality of the approximation is thus given by the loss of orthogonality
Q̂T BQ̂− I between the column vectors in the factor Q̂. The crucial idea of
this approach is to drop entries in Q̄ so that the size of the right residual
R̄Q̄ − I is throughout the orthogonalization uniformly bounded by a drop
tolerance τ . This strategy essentially means to consider orthogonalization
step-dependent dropping and to introduce the parameter τk ≤ τ/κ(R̂k) that
takes into account the conditioning of the k-th principal submatrix of the
factor R̂ (denoted as R̂k for k = 1, . . . ,m here). This dropping techniques
is thus based on monitoring the condition number κ(R̂k) that increases with
the orthogonalization step and thus the sequence of drop tolerances τk de-
creases as κ(R̂k) increases. A natural strategy is then to keep the increase
of κ(R̂k) as low as possible and this is achieved by the column pivoting in
the Gram-Schmidt algorithm. Based on numerical experiments it is shown
in [22] that this approximate inverse preconditioner can efficiently solve large
difficult problems and it is rather robust in comparison to other non-adaptive
approximate inverse preconditioners.

4 Orthogonalization with respect to an indef-

inite bilinear form

For a symmetric but indefinite and nonsingular matrix B ∈ Rm,m and for
a full column rank matrix A = (a1, . . . , an) ∈ Rm,n we can also look for
the decomposition A = QR, where the columns of Q = (q1, . . . , qn) ∈ Rm,n

are mutually orthogonal with respect to the bilinear form 〈B·, ·〉 so that
QT BQ = Ω = (diag(ωj)) ∈ diag(±1), and where R ∈ Rn,n is upper tri-
angular with positive diagonal entries. It follows that under assumption on
nonzero principal minors of AT BA (or in other words, if AT BA is strongly
nonsingular) such decomposition exists and the triangular factor R satis-
fies the Cholesky-like factorization AT BA = RT ΩR. Conversely, given the
Cholesky-like factorization AT BA = RT ΩR, the factor Q can be recovered
as Q = AR−1.
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Note that for positive definite B the signature matrix Ω is equal to
Ω = I, and the condition numbers are equal to or can be bounds as κ(R) =
κ1/2(AT BA) and κ(Q) ≤ κ1/2(B). For indefinite B from AT BA = RT ΩR it
follows only that ‖AT BA‖ ≤ ‖R‖2 and ‖(AT BA)−1‖ ≤ ‖R−1‖2. Thus we
have just a lower bound for the condition number of R as κ1/2(AT BA) ≤
κ(R). It was shown in [33] that the condition numbers of R and Q can be
bounded also from above in terms of the conditioning of AT BA and in terms
of only those its principal submatrices (AT BA)j where there is a change of
the sign in the factor Ω. The following upper bounds hold for the norm of
R−1, for the norm of R, and for the condition number κ(R),

‖R−1‖ ≤

‖(AT BA)−1‖ + 2
∑

j; ωj+1 6=ωj

‖(AT BA)−1
j ‖

1/2

, (15)

‖R‖ ≤ ‖AT BA‖‖R−1‖, (16)

κ(R) ≤ ‖AT BA‖

‖(AT BA)−1‖ + 2
∑

j; ωj+1 6=ωj

‖(AT BA)−1
j ‖

 , (17)

respectively. The norm and the condition number of the factor Q can be
then bounded from above as ‖Q‖ ≤ ‖A‖‖R−1‖ and κ(Q) ≤ κ(A)κ(R). The
particular case of a saddle-point matrix is treated in Chapter 5 of [32].

Several algorithms for computing such factors Q and R exist, see e.g. Sec-
tion 3 in [33]. The corresponding classical Gram-Schmidt algorithm, mod-
ified Gram-Schmidt algorithm, and classical Gram-Schmidt algorithm with
reorthogonalization are also given in Table 3.

4.1 Cholesky-like factorization of symmetric indefinite
matrices and Gram-Schmidt orthogonalization

A significant part of the paper [33] is devoted to the rounding error of four
important schemes used for orthogonalization of vectors with respect to the
bilinear form induced by a symmetric indefinite but nonsingular matrix B.
Two of them use the Gram-Schmidt algorithm. The worst-case bounds on the
factorization error and on the loss of B-orthogonality for quantities computed
in finite precision arithmetic are given in terms of the factors proportional to
the roundoff unit u, in terms of the norms of A, B and AT BA, and in terms
of the extremal singular values of computed factors Q̄ and R̄.

The loss of B-orthogonality of vectors computed by the Gram-Schmidt
algorithm with respect to the bilinear form induced by B is measured by
the quantity ‖Q̄T BQ̄− Ω̄‖, where Ω̄ denotes the computed signature matrix.

12



classical Gram-Schmidt:
for j = 1, . . . , n

uj = aj

for i = 1, . . . , j − 1
ri,j = ωi〈Baj, qi〉
uj = uj − ri,jqi

ωj =sign
[
〈Baj, aj〉 −

j−1∑
i=1

ωir
2
i,j

]
rj,j =

√∣∣∣〈Baj, aj〉 −
j−1∑
i=1

ωir2
i,j

∣∣∣
qj = uj/rj,j

modified Gram-Schmidt:
for j = 1, . . . , n

uj = aj

for i = 1, . . . , j − 1
ri,j = ωi〈Buj, qi〉
uj = uj − ri,jqi

ωj =sign
[
〈Baj, aj〉 −

j−1∑
i=1

ωir
2
i,j

]
rj,j =

√∣∣∣〈Baj, aj〉 −
j−1∑
i=1

ωir2
i,j

∣∣∣
qj = uj/rj,j

classical Gram-Schmidt with reorthogonalization:
for j = 1, . . . , n

uj = aj

for k = 1, 2
a

(k)
j = uj

for i = 1, . . . , j − 1
r
(k)
i,j = ωi〈Ba

(k)
j , qi〉

uj = uj − r
(k)
i,j qi

ωj = sign[〈Buj, uj〉]

rj,j =
√
|〈Buj, uj〉|

qj = uj/rj,j

Table 3: Gram-Schmidt orthogonalization with respect to symmetric indef-
inite bilinear form: classical algorithm, modified algorithm, and classical
algorithm with reorthogonalization.

Assuming the numerical nonsingularity of the Gram matrix AT BA and the
numerical nonsingularity of its principal submatrices, where there is a change
of the sign in the signature matrix in the form

O(u)‖B‖‖A‖2κ(AT BA) max
j=1,...,n−1
ω̄j+1 6=ω̄j

‖(AT BA)−1
j ‖ < 1,
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the loss of B-orthogonality between the column vectors in the factor Q̄ com-
puted by the classical Gram-Schmidt algorithm satisfies the bound

‖Q̄T BQ̄−Ω̄‖ ≤ O(u)
[
κ2(R̄) + ‖R̄−1‖2‖B‖‖A‖2 + 3‖B‖‖A‖‖R̄−1‖‖Q̄‖κ(R̄)

]
.

(18)
It was also shown in [33] that the accuracy of computed factors in the

classical Gram-Schmidt algorithm can be improved by reorthogonalization.
Assuming the somewhat stronger assumption

O(u)‖B‖‖A‖2‖AT BA‖

‖(AT BA)−1‖ + max
j=1,...,n−1
ω̄j+1 6=ω̄j

‖(AT BA)−1
j ‖

2

< 1,

the loss of orthogonality of computed vectors Q̄ in the classical Gram-Schmidt
algorithm with reorthogonalization is bounded by

‖Q̄T BQ̄− Ω̄‖ ≤ O(u)‖B‖‖Q̄‖2. (19)

Note that due to (16)-(17) and since ‖Q̄‖ / ‖A‖R̄−1‖, the bound (19) is
significantly better than the bound (18). The improvement is essentially by
the factor proportional to the condition number κ(R̄). However, even in
this case the loss of B-orthogonality depends on the condition number of the
Gram matrix AT BA and the condition number of all its principal submatrices
where there is a change of the sign in the signature matrix. For details we
refer to [33].

4.2 Sign patterns of J-orthogonal matrices

As we have noted, the column vectors in the factor Q ∈ Rm,n are B-
orthogonal satisfying the identity QT BQ = Ω ∈ Rn,n. Considering the
square case n = m and taking the eigen-decomposition B = UT ΛU =
(|Λ|1/2U)T J(|Λ|1/2U), there exists a permutation matrix P ∈ Rm,m so that
PJP T = Ω, where J ∈ diag(±1) ∈ Rm,m is a signature matrix of the diag-
onal matrix Λ = |Λ|1/2J |Λ|1/2. Then the square matrix Q̃ ∈ Rm,m defined
as Q̃ = |Λ|1/2UQP is J-orthogonal and satisfies Q̃T JQ̃ = J . It is quite clear
that, since B is nonsingular, the matrices J and Q̃ are also nonsingular. The
matrix Q̃ ∈ Rm,m is called a G-matrix if it is nonsingular and there exist
nonsingular diagonal matrices D1 and D2 such that Q̃−T = D1Q̃D2, where
Q̃−T denotes the transpose of the inverse of Q̃. In the paper [16] several con-
nections are established between these two classes of matrices. Based on the
observation that a matrix is a G-matrix if and only if it is diagonally (with
positive diagonals) equivalent to a column permutation of a J-orthogonal
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matrix, several results on the sign patterns of J-orthogonal matrices were
developed in [16]. The key ingredient of this work consists in the identifica-
tion of sign patterns of m×m matrices that allow a J-orthogonal matrix for
some fixed matrix J or for an arbitrary matrix J . This analysis attempts to
extend a research of many authors performed for the particular case of or-
thogonal matrices, where J = I and where the column vectors are orthogonal
with respect to the standard inner product. The class of m×m matrices that
allow an orthogonal matrices was partially characterized for small dimensions
m using the concept of the so-called sign-potentially orthogonal conditions
that are necessary conditions for sign pattern to belong to this class. For
a comprehensive description of results on sign patterns we refer to [14].

5 Orthogonalization with respect to a skew-

symmetric bilinear form

It is well-known that if the matrix B induces a skew-symmetric bilinear form,
then every vector is isotropic. Since the eigenvalues of a real skew-symmetric
matrix are purely imaginary, it is not possible to diagonalize it using a real
diagonal basis. However, it is possible to bring every skew-symmetric and
nonsingular matrix of even dimension B ∈ R2m,2m to a block diagonal form
using the Schur-like factorization

B = V T

(
0 Σ2

−Σ2 0

)
V = V T

(
Σ 0
0 Σ

)(
0 I
−I 0

)(
Σ 0
0 Σ

)
V, (20)

where V ∈ R2m,2m is an orthogonal matrix satisfying V T V = V V T = I,
and where Σ = diag(σ1, . . . , σm) ∈ Rm,m is diagonal and nonsingular with
positive entries. For a tall full column rank matrix Ã ∈ R2m,2n, where m ≥
n = rank(Ã)/2 one can look for a decomposition in the form Ã = Q̃R, where
R ∈ R2n,2n is upper triangular with positive entries on its diagonal, and
where Q̃ ∈ R2m,2n satisfies the block B-orthogonality relation

Q̃T BQ̃ = J̃ ≡ diag
(( 0 1

−1 0

)
, . . . ,

(
0 1
−1 0

))
∈ R2n,2n. (21)

It is clear from (20) that if we introduce a full-column rank matrix A =(
Σ 0
0 Σ

)
V Ã = (a1, . . . , a2n) ∈ R2m,2n, then we can look for the triangular

factorization A = QR with Q = (q1, . . . , q2n) ∈ R2m,2n satisfying QT JQ = J̃ ,

whereas the orthogonal matrix J =

(
0 I
−I 0

)
∈ R2m,2m induces a nonde-

genrate skew-symmetric bilinear form that is often called symplectic bilinear
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form. Similarly, the factorization A = QR is frequently referred as the SR
factorization of A, and the factor Q is called semi-symplectic factor. It was
shown by several authors in various contexts (see e.g. the references in [9])
that such factorization exists if all principal submatrices of the Gram ma-
trix AT JA with even dimension are nonsingular. Then the upper triangular
factor R can be computed from the Cholesky-like factorization

AT JA = RT J̃R (22)

and the semi-symplectic factor can be recovered as Q = AR−1. Several algo-
rithms for computing such factors Q and R are used in practical computa-
tions, see e.g. the introductory discussion in [9]. The corresponding classical
Gram-Schmidt and modified Gram-Schmidt algorithms are summarized in
Table 4.

5.1 Conditioning of factors in the SR factorization

As we have noted above, under certain assumptions on the Gram matrix
AT JA, a full-column rank matrix A can be factorized into the product of
semi-symplectic matrix Q and an upper triangular matrix R. As it is also
seen in Table 4 this factorization is not unique. Since the SR factorization
can be seen as an orthogonalization process with respect to a bilinear form
induced by the skew-symmetric matrix J , this freedom can be interpreted
as a freedom in the normalization step, where we look for the 2 × 2 upper

triangular matrix

(
r11 r12

0 r22

)
that satisfies

(
r11 0
r12 r22

)(
0 1
−1 0

)(
r11 r12

0 r22

)
= (AT JA)2j\(AT JA)2(j−1)

≡ αj

(
0 1
−1 0

)
,

where (AT JA)2j\(AT JA)2(j−1) denotes the Schur complement of the prin-
cipal submatrix (AT JA)2(j−1) of order 2(j − 1) with respect to the princi-
pal submatrix (AT JA)2j of order 2j for j = 2, . . . , n. For j = 1 we set
(AT JA)2j\(AT JA)2(j−1) = (AT JA)2j. The main goal of the paper [9] is to
analyze the freedom of choice in the semi-symplectic and the upper triangu-
lar factors in the SR decomposition in order to develop numerically stable
algorithms. In particular, several widely used suggestions on how to choose
the free parameters are interpreted in terms of the conditioning of certain
blocks of the semi-symplectic factor Q or the triangular factor R. As a re-
sult, two important choices with local optimality properties are proposed.
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classical Gram-Schmidt:

for j = 1, . . . , n
[u2j−1, u2j] = [a2j−1, a2j]

for i = 1, . . . , j − 1

[u2j−1, u2j] = [u2j−1, u2j] − [q2i−1, q2i]

(
0 1
−1 0

)−1

[q2i−1, q2i]
T J [a2j−1, a2j](

r11 0
r12 r22

)(
0 1
−1 0

)(
r11 r12

0 r22

)
= [u2j−1, u2j]

T J [u2j−1, u2j]

[q2j−1, q2j] = [u2j−1, u2j]

(
r11 r12

0 r22

)−1

modified Gram-Schmidt:

for j = 1, . . . , n
[u2j−1, u2j] = [a2j−1, a2j]

for i = 1, . . . , j − 1

[u2j−1, u2j] = [u2j−1, u2j] − [q2i−1, q2i]

(
0 1
−1 0

)−1

[q2i−1, q2i]
T J [u2j−1, u2j](

r11 0
r12 r22

)(
0 1
−1 0

)(
r11 r12

0 r22

)
= [u2j−1, u2j]

T J [u2j−1, u2j]

[q2j−1, q2j] = [u2j−1, u2j]

(
r11 r12

0 r22

)−1

Table 4: Gram-Schmidt orthogonalization with respect to skew-symmetric
bilinear form: classical algorithm and modified algorithm.

The first choice leads to the minimization of the condition number of the
2 × 2 diagonal blocks in the upper triangular factor. It turns out that it is
equivalent to the choice of Mehrmann who suggested to restrict the diago-
nal block of R only to diagonal matrix setting its entries equal in absolute
value. The second choice leads to the minimization of the condition number
of local blocks in Q with columns vectors that are orthogonal and equilib-
riated but in general not normalized due to restriction given by symplectic
bilinear form. The worst-case bounds for the extremal values of the whole
semi-symplectic or upper triangular factor in terms of the spectral properties
of even-dimensioned principal submatrices of the Gram matrix AT JA for the
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first choice are also developed in [9]. However, the strategy that would lead
to global minimization of the condition number of either semi-symplectic or
triangular factor is not known yet and it is a subject of current research.
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[11] L. Giraud, J. Langou, M. Rozložńık, The loss of orthogonality in the
Gram-Schmidt orthogonalization process, Comput. Math. Appl. 50 (7),
2005, 1069–1075.

18
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